• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Principles of 3-D genome folding and gene expression studied across species

Bioengineer by Bioengineer
March 7, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Razin lab

It seems like a feat of magic. Human DNA, if stretched out into one, long spaghetti-like strand, would measure 2 meters (six feet) long. And yet, all of our DNA is compacted more than 10,000 times to fit inside a single cell. How is this accomplished while preserving the overall, vital genomic organization?

With new techniques, scientists are beginning to understand the principles of 3D genome folding. And in one of the studies of its kind, Anastasia Kovina, Sergey Razin a et al. have examined the well-studied globin gene cluster to understand the evolution of genome folding behind a vital process, delivering oxygen throughout the body.

Their study sheds light on the genomic evolutionary process that resulted in segregation of the alpha and beta-globin genes into two differently regulated domains in warm-blooded vertebrates. "We suggest that globin gene domains of some modern, cold-blooded animals retain certain features of an ancient, ancestral domain," said corresponding author Sergey Razin.

By investigating globin genes in the zebrafish model organism, their evidence points toward their suggestion that modern clusters of α- and β-globin genes of warm-blooded animals evolved from an ancestral locus, contained within a globular genomic cluster that was located close to other evolutionary conserved genes.

They found that evidence of a dynamic genomic organization of globin gene cluster that differs depending on the developmental age of the zebrafish. Using different assays, they have shown that the adult globin sub-compartment of the zebrafish gene locus is insulated from the embryonic larval component.

"We have found that the major globin gene locus of zebrafish (Danio rerio) is structurally and functionally segregated into two spatially distinct subloci harboring either adult or embryo-larval globin genes," said Razin. "These subloci demonstrate different organization at the level of chromatin domains and different modes of spatial organization, which appears to be due to selective interaction of the upstream gene enhancer with the sublocus harboring globin genes of the adult type."

This organization drastically differs from that of the mammalian α- and β-globin gene domains, where both embryo-fetal and adult globin genes are recruited to the same regulatory elements in a developmental and stage-specific process.

The finding of a functional separation of adult and embryo globin genes reflected in the 3D genomic organization chromatin will provide an important contribution to the field and interesting evolutionary perspective to how gene clusters are organized and expressed.

###

Media Contact

Joseph Caspermeyer
[email protected]
480-258-8972
@OfficialSMBE

http://mbe.oxfordjournals.org/

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Revolutionizing Sustainable Construction: The Role of Cardboard and Earth

Revolutionizing Sustainable Construction: The Role of Cardboard and Earth

September 21, 2025

TMolNet: Revolutionizing Molecular Property Prediction

September 21, 2025

NICU Families’ Stories Through Staff Perspectives

September 21, 2025

CT Scans in Kids: Cancer Risk Insights

September 20, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionizing Sustainable Construction: The Role of Cardboard and Earth

TMolNet: Revolutionizing Molecular Property Prediction

NICU Families’ Stories Through Staff Perspectives

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.