• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Princeton Chemistry creates quantum dots at room temp using lab-designed protein

Bioengineer by Bioengineer
December 14, 2022
in Chemistry
Reading Time: 4 mins read
0
Quantum dots
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Nature uses 20 canonical amino acids as building blocks to make proteins, combining their sequences to create complex molecules that perform biological functions.

Quantum dots

Credit: Courtesy of the Hecht and Scholes labs

Nature uses 20 canonical amino acids as building blocks to make proteins, combining their sequences to create complex molecules that perform biological functions.

But what happens with the sequences not selected by nature? And what possibilities lie in constructing entirely new sequences to make novel, or de novo, proteins bearing little resemblance to anything in nature?

That’s the terrain Princeton University’s Hecht Lab works in. And recently, their curiosity for designing their own sequences paid off.

They discovered the first known de novo protein that catalyzes, or drives, the synthesis of quantum dots. Quantum dots are fluorescent nanocrystals used in electronic applications from LED screens to solar panels.

Their work opens the door to making nanomaterials in a more sustainable way by demonstrating that protein sequences not derived from nature can be used to synthesize functional materials – with pronounced benefits to the environment.

Quantum dots are normally made in industrial settings with high temperatures and toxic, expensive solvents – a process that is neither economical nor environmentally friendly. But Hecht Lab researchers pulled off the process at the bench using water as a solvent, making a stable end-product at room temperature.

“We’re interested in making life molecules, proteins, that did not arise in life,” said Professor of Chemistry Michael Hecht, who led the research with Greg Scholes, the William S. Tod Professor of Chemistry and chair of the department. “In some ways we’re asking, are there alternatives to life as we know it? All life on earth arose from common ancestry. But if we make lifelike molecules that did not arise from common ancestry, can they do cool stuff?

“So here, we’re making novel proteins that never arose in life doing things that don’t exist in life.”

The team’s process can also tune nanoparticle size, which determines the color quantum dots glow, or fluoresce, in. That holds possibilities for tagging molecules within a biological system, like staining cancer cells in vivo.

“Quantum dots have very interesting optical properties due to their sizes,” said Yueyu Yao, co-author on the paper and a fifth-year graduate student in the Hecht Lab. “They’re very good at absorbing light and converting it to chemical energy – that makes them useful for being made into solar panels or any sort of photo sensor.

“But on the other hand, they’re also very good at emitting light at a certain desired wavelength, which makes them suitable for making LED screens.”

And because they’re small – comprised of only about 100 atoms and maybe 2 nanometers across – they’re able to penetrate some biological barriers, making their utility in medicines and biological imaging especially promising.

The research, “A de novo protein catalyzes the synthesis of semiconductor quantum dots,” was published this week in the Proceedings of the National Academy of Sciences (PNAS).

Why use de novo proteins?

“I think using de novo proteins opens up a way for designability,” said Leah Spangler, lead author on the research and a former postdoc in the Scholes Lab. “A key word for me is ‘engineering.’ I want to be able to engineer proteins to do something specific, and this is a type of protein you can do that with.

“The quantum dots we’re making aren’t great quality yet, but that can be improved by tuning the synthesis,” she added. “We can achieve better quality by engineering the protein to influence quantum dot formation in different ways.”

Based on work done by Sarangan Chari, Hecht Lab senior chemist and a corresponding author, the team used a de novo protein it designed named ConK to catalyze the reaction. Researchers first isolated ConK in 2016 from a large combinatorial library of proteins. It’s still made of natural amino acids, but it qualifies as “de novo” because its sequence doesn’t have any similarity to a natural protein.

Researchers found that ConK enabled the survival of E. coli in otherwise toxic concentrations of copper, suggesting it might be useful for metal binding and sequestration. The quantum dots used in this research are made out of cadmium sulfide. Cadmium is a metal, so researchers wondered if ConK could be used to synthesize quantum dots.

Their hunch paid off. ConK breaks down cysteine, one of the 20 amino acids, into several products, including hydrogen sulfide. That acts as the active sulfur source that will then go on to react with the metal cadmium. The result is CdS quantum dots.

“To make a cadmium sulfide quantum dot, you need the cadmium source and the sulfur source to react in solution,” said Spangler. “What the protein does is make the sulfur source slowly over time. So, we add the cadmium initially but the protein generates the sulfur, which then reacts to make distinct sizes of quantum dots.”

This research was supported by the National Science Foundation MRSEC program (DMR-2011750), the Princeton University Writing Center, and the Canadian Institute for Advanced Research. The research was also supported by NSF grant MCB-1947720 to MH.

 



Journal

Proceedings of the National Academy of Sciences

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

A de novo protein catalyzes the synthesis of semiconductor quantum dots

Article Publication Date

12-Dec-2022

COI Statement

The authors declare a competing interest. The authors have patent filings to disclose, A provisional patent application was filed 3/7/2022, Application No. 63/317,120.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Bezos Earth Fund Awards $2M to UC Davis and American Heart Association to Pioneer AI-Designed Foods

October 24, 2025
Organocatalytic Intramolecular Macrocyclization of Quinone Methylidenes with Alcohols Achieves Enantio-, Atropo-, and Diastereoselectivity

Organocatalytic Intramolecular Macrocyclization of Quinone Methylidenes with Alcohols Achieves Enantio-, Atropo-, and Diastereoselectivity

October 24, 2025

Breakthrough Discovery of Elusive Solar Waves That May Energize the Sun’s Corona

October 24, 2025

From Wastewater to Fertile Ground: Chinese Researchers Achieve Dual Breakthroughs in Phosphorus Recycling

October 23, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1282 shares
    Share 512 Tweet 320
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    309 shares
    Share 124 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    193 shares
    Share 77 Tweet 48
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    133 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

3D-Printed Scaffolds Advance Glioblastoma Drug Screening

Evidence-Based Model for Public Health Nursing in Japan

Intrahepatic Cholangiocarcinoma: Key Updates from Guidelines

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.