• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

‘Pregnant’ housefly males demonstrate the evolution of sex determination

Bioengineer by Bioengineer
May 24, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Peter Koomen

Sex is one of the most essential characteristics of an individual – not only for humans, but also for animals and plants. All organisms that reproduce sexually are usually clearly male or female, whereby the genetic control mechanism responsible for sex determination varies widely from species to species. In humans, women have two X chromosomes in the cell nuclei, while men have an X and a Y chromosome. The Y chromosome carries the SRY gene, which determines the male sex. This gene developed about 150 million years ago during the evolution of the mammals.

Sex determination depends on the housefly habitat

Many different sex-determining mechanisms prevail among insects. Flies in particular are well suited for examining the evolution of this variety. The wide-spread housefly (Musca domestica) is very unusual in this regard: Depending on where they live, they use different methods for sex determination. In northern latitudes, females have X chromosomes, while males have an X and a Y chromosome. Here, as well, the Y chromosome carries a gene that determines maleness. In southern latitudes, on the other hand, houseflies do not have a Y chromosome. The male-determining gene lies on one of the other five chromosomes.

The gene responsible for determining maleness in houseflies has been unknown until now. Together with colleagues from Groningen (the Netherlands) and Göttingen (Germany), the group of researchers led by Daniel Bopp of the Institute of Molecular Life Sciences of the University of Zurich has succeeded in identifying this gene. With genetic tricks, the scientists created offspring of the same sex and could then search for genes that were already active early in the development of males.

If the male-determining gene is temporarily switched off, males become "pregnant"

According to developmental biologist Bopp, one gene stood out during these analyses: "When this gene temporarily loses its function during early development, 'pregnant' males filled with mature eggs result." In case of a total functional loss of the gene, the male even completely turns into a female that is capable of sexual reproduction. The newly discovered gene is called "Mdmd" (Musca domestica male determiner). It is relatively large and very similar to a known gene, CWC22. Researchers assume that Mdmd arose from a duplication of the CWC22 gene.

Development of new sex-determining mechanisms

In the case of houseflies from southern latitudes, the gene that determines maleness lies on a so-called proto-sex chromosome. This chromosome has apparently assumed a prime role in sex determination only recently from an evolutionary viewpoint. "With our work, we were able to demonstrate that new sex chromosomes arise when existing genes like Mdmd move from the Y chromosome to another chromosome," Daniel Bopp says. After the change of location, the Y chromosome is lost and the new sex chromosome with the Mdmd gene assumes the function of determining the male sex.

Before the beginning of this research, no gene for maleness was known in insects until now. In the meantime, corresponding genes have been found in two mosquito species. The Mdmd gene of the housefly, however, has no similarity with the two mosquito genes. This proves how varied sex determination can be in different species and how fast the genetic program responsible for the development of males and females changes within the course of evolution.

New pest control strategies

The latest discoveries of the basic genetic principles for sex determination are valuable not just for evolutionary biology. This knowledge is also very useful for developing new, sustainable strategies for pest control. When specially bred, sterile insect males are released, they compete with the wild males for the females. After the repeated release of several million males, the natural population in the affected region collapses. The technology has already been used successfully against fruit pests in agriculture. In the future, they will also be able to be used in the control of disease carriers, like mosquitoes or houseflies. Daniel Bopp emphasizes, "Fundamental research with houseflies can therefore be of great benefit for society."

###

Media Contact

Daniel Bopp
[email protected]
41-446-354-869
@uzh_news

http://www.uzh.ch

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Revolutionary Skin Patch Delivers Multimodal Haptic Feedback

Revolutionary Skin Patch Delivers Multimodal Haptic Feedback

October 12, 2025

Exploring 25 Key Themes in Integrated Child Care

October 12, 2025

AI Enhances Skull Stripping Techniques Throughout Lifespan

October 12, 2025

Transforming Agrifood Jobs and Compensation Structures

October 12, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1226 shares
    Share 490 Tweet 306
  • New Study Reveals the Science Behind Exercise and Weight Loss

    103 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    89 shares
    Share 36 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionary Skin Patch Delivers Multimodal Haptic Feedback

Exploring 25 Key Themes in Integrated Child Care

AI Enhances Skull Stripping Techniques Throughout Lifespan

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.