• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Predicting new quantum echoes: Ultrafast lightwave control of electrons in crystals

Bioengineer by Bioengineer
December 1, 2022
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The quantum realm of atomic particles is embedded with randomness. Still, precise control of quantum systems, such as quantum computers, is of great importance for modern quantum science and prospective quantum technology.

Figure 1

Credit: Atsushi Ono

The quantum realm of atomic particles is embedded with randomness. Still, precise control of quantum systems, such as quantum computers, is of great importance for modern quantum science and prospective quantum technology.

In the classical world, time is constantly moving forward. But in the quantum world, time is theoretically malleable and reversible. And it is through these time-reversal dynamics that scientists have attempted to control quantum systems. For example, spin echoes – proposed by Erwin Hahn in 1950 – are widely observed in quantum spin-systems and are fundamental for nuclear magnetic resonance and magnetic resonance systems.

However, the application of such time-reversal phenomenon becomes difficult in more sophisticated, quantum condensed-matter systems – i.e., quantum systems with infinite degrees of freedom. This is because quantum coherence gets lost quickly when interacting with the environment.

Now, a research group led by Atsushi Ono, assistant professor in the Department of Physics at Tohoku University, has unearthed a new type of echo phenomenon associated with the energy-band structure in crystalline solids. So-called “energy-band echoes” were discovered after the group began theoretically investigating the ultrafast dynamics of optically driven quasiparticles in crystalline solids.

Details of their findings were published in the Journal Physical Review Research on November 30, 2022.

The group’s numerical simulation and analytical expressions revealed that quasiparticles are driven coherently by an electric field pulse, and the photoexcitation process generates echoes when the quasiparticles recombine. These echo pulses carry information about the dispersion relations of quasiparticles.

Additionally, Ono and his team observed energy-band echoes even in strongly correlated systems, where free electrons are not well-defined quasiparticles on account of many-body interactions.

“Our discovery provides a different perspective of ultrafast dynamics that are driven and controlled by a lightwave,” Ono said. “Energy-band echoes could be used for all-optical momentum-resolved spectroscopy of quasiparticles in both crystalline solids and cold atoms in optical lattices, even when strong many-body correlations are present.”



Journal

Physical Review Research

Article Title

Energy-band echoes: Time-reversed light emission from optically driven quasiparticle wave packets

Article Publication Date

30-Nov-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Why Beer Foam Stays So Stable: The Science Behind the Perfect Pour

Why Beer Foam Stays So Stable: The Science Behind the Perfect Pour

August 26, 2025
SwRI Scientist Heads Science Team for New NASA Heliophysics AI Foundation Model

SwRI Scientist Heads Science Team for New NASA Heliophysics AI Foundation Model

August 26, 2025

Expanding Azole Chemistry with Precise N-Alkylation

August 26, 2025

Advancing Green Technology with More Efficient and Reliable SiC Devices

August 26, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

OLED-Driven Metasurfaces Enable Holographic Projections

Understanding Female-to-Female Aggression in Workspaces

Thirst in Post-Surgery Children: A Cross-Sectional Study

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.