• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Predicting insect feeding preferences after deforestation

Bioengineer by Bioengineer
October 6, 2017
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Felix Fornoff, University of Freiburg

Like a scene from the movie Alien, insect parasitoids inject their eggs into unsuspecting hosts, their offspring grow and eat from within, eventually bursting out leaving dead, empty host vessels. These tiny predators, many of them wasps, can have major ecological and economic impacts. For example, wasps in the genus Melittobia attack pollinating bumblebees. Parasitoid wasp larvae feed on the pupae of nesting bees, and their fast reproduction can destroy entire colonies with barely a trace of the preceding carnage.

Understanding how parasitoids and hosts interact, and how their interactions change with human influence, is critically important to understanding ecosystems. New research by an international team of researchers finds mathematical models can predict complex insect behavioural changes using a simple description of insect preferences. The research, published in the journal Nature Communications on October 6, was able to predict parasitism rates after deforestation without the need for extensive field data.

"Collecting field data is necessary but expensive, so it's great to show we can use mathematical models to help focus efforts and make data collection more efficient," Phillip Staniczenko, Ph.D., lead author and research fellow at the National Socio-Environmental Synthesis Center (SESYNC). "Faced with all the complicated relationships among species, and between species and the environment, it's amazing we can identify simple patterns that, although not perfect, describe how humans might be affecting parasitism in the same way at different places all over the world."

Staniczenko set out to see if recorded changes in a particular type of parasitic interaction, between parasitoids and their hosts, shared similarities between data sets from different countries, and, therefore, might be predictable. Staniczenko and colleagues analysed data on bees, wasps and their parasitoids collected using trap nests. Joining this research effort were Staniczenko's former adviser, Felix Reed-Tsochas, Ph.D., at the CABDyN Complexity Centre at the University of Oxford's Saïd Business School, Owen Lewis, Ph.D., professor of ecology at the University of Oxford, Jason Tylianakis, Ph.D., professor of ecology at the University of Canterbury in New Zealand, Matthias Albrecht, Ph.D., researcher at the Institute for Sustainability Sciences in Switzerland, Valérie Coudrain, Ph.D., researcher at the Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology in France, and Alexandra-Maria Klein, professor of ecology at the University of Freiburg in Germany.

They based their findings on host-parasitoid interaction data collected in Ecuador, Indonesia, and Switzerland, at field sites located in a diverse range of ecosystems, including tropical forest and agroforest, temperate meadows and plains, as well as human-modified habitats, such as pasture land and rice paddies. Because parasitoids can attack multiple hosts, interaction data can be combined to build networks that describe, in one mathematical object, the relative rates of parasitism among multiple species at a field site. Given these data, the researchers first designed a way of extracting parasitoid preferences for each host from ecological networks.

"A lot of information about behaviour and species' responses to the environment is contained in ecological networks, but the question is how to make this information useful for prediction," Staniczenko said. "Eventually, we realised the answer was interaction preferences, which quantify how much more or less parasitoids attack their hosts compared to a baseline expectation that they attack every time a parasitoid randomly encounters one of its possible hosts."

Co-author Lewis added, "It would be very difficult and time consuming to study the feeding behaviour of all these species in the field — particularly in high diversity ecosystems like tropical rainforests. Fortunately, it turns out that using interaction preferences might allow us to skip that step."

Staniczenko continued, "We found that when interaction preferences changed, they did so in the same way in each country. This meant we could design models that captured systematic shifts in interaction preferences to make predictions at new locations, without needing to collect lots of new interaction data."

"Adding preference data to interaction networks is a big step forward because it allows refinement of the interaction map from a simple list of who-eats-whom to measures that actually provide information on the relative intensity of those interactions. Preference data are clearly a great boon to prediction and an important target for inclusion in future studies," commented Bill Fagan, Professor and Chair of Biology at the University of Maryland, who was not involved in the project.

Staniczenko and colleagues focused on deforestation, but their new mathematical approach will be valuable for understanding the consequences of many types of human-driven environmental changes. "Interactions among species are the gears that keep the engine of ecosystems working to provide us with resources for our survival. Changes to the environment caused by human activities have disrupted these interactions, and it has previously been difficult to predict changes before it's too late," co-author Tyliankis said.

"We're a long way from predicting the consequences of every human activity," Staniczenko concluded, "but at least now we know it's possible."

###

Media Contact

Emily Cassidy
[email protected]
410-919-4990
@sesync

http://www.sesync.org/

Share12Tweet8Share2ShareShareShare2

Related Posts

Standardized Extract Boosts Immunity in Chemotherapy Mice

September 20, 2025
Enhancing Labeo rohita Growth with Trypsin Nanoparticles

Enhancing Labeo rohita Growth with Trypsin Nanoparticles

September 20, 2025

Comparing ZISO-Driven Carotenoid Production in Dunaliella Species

September 19, 2025

When Metabolism Powers More Than Just Fuel: Exploring Its Expanded Role

September 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Key Drivers of Corporate Governance in Burundi’s Cooperatives

Revolutionizing Sustainable Construction: The Role of Cardboard and Earth

TMolNet: Revolutionizing Molecular Property Prediction

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.