• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Preclinical study demonstrates promising treatment for rare bone disease

Bioengineer by Bioengineer
November 20, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: SBP

La Jolla, Calif., November 20, 2017 – Researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) have led a preclinical study demonstrating that the drug palovarotene suppresses the formation of bony tumors (osteochondromas) in models of multiple hereditary exostoses (MHE). The research, published in the Journal of Bone and Mineral Research, is an important step toward an effective pharmacological treatment for MHE, a rare genetic condition that affects about 1 in 50,000 people worldwide.

MHE (also known as multiple osteochondromas, or MO) is an inherited genetic disorder in which multiple benign bone tumors covered with cartilage grow at active areas of bone growth. The condition is caused by mutations in two genes: EXT1 and EXT2. Individuals with these mutations develop painful, debilitating tumors, often repeatedly during their childhood and adolescence. Surgery and pain management are currently the only treatment options for MHE patients.

"Our study shows that palovarotene is a remarkably potent inhibitor of osteochondromas, says Yu Yamaguchi, M.D., Ph.D., professor at SBP. "In our mouse model of MHE, we were able to reduce bone tumors by more than 90 percent, which is a significant improvement over the previous drugs we have tested in the same mouse model."

"Especially promising is that palovarotene has been tested for toxicity and side effects in humans and has been shown to be well tolerated," says Yamaguchi. "This means that time line for getting the drug to the clinic for MHE may be shortened."

Clementia Pharmaceuticals licensed palovarotene from Roche Pharmaceuticals, which previously investigated the compound as a possible treatment for chronic pulmonary disease and evaluated its safety in more than 800 healthy volunteers and patients. Clementia Pharmaceuticals is planning to initiate a Phase 2/3 clinical trial in 2018 for patients with MHE.

"This is first time we are seeing a clear path toward a therapy that will improve the lives of MHE patients and their families," says Sarah Ziegler, vice-president of the MHE Research Foundation. "The long awaited first clinical trial for a drug to treat MHE is now a reality. This breakthrough comes after years of working with medical professionals and scientists like Dr. Yamaguchi to achieve something we have all been desperately striving for, for many years."

###

Co-authors of the study include: Toshihiro Inubushi, Fumitoshi Irie, SBP; Isabelle Lemire, Clementia Pharmaceuticals.

Funding sources for this research came, in part, from Clementia Pharmaceuticals and the National Institute of Health (R01AR055670).

Yu Yamaguchi is recipient of a research grant from and a consultant of Clementia Pharmaceuticals.

DOI: 10.1002/jbmr.3341

About SBP

Sanford Burnham Prebys Medical Discovery Institute (SBP) is an independent nonprofit medical research organization that conducts world-class, collaborative, biological research and translates its discoveries for the benefit of patients. SBP focuses its research on cancer, immunity, neurodegeneration, metabolic disorders and rare children's diseases. The Institute invests in talent, technology and partnerships to accelerate the translation of laboratory discoveries that will have the greatest impact on patients. Recognized for its world-class NCI-designated Cancer Center and the Conrad Prebys Center for Chemical Genomics, SBP employs about 1,100 scientists and staff in San Diego (La Jolla), Calif., and Orlando (Lake Nona), Fla. For more information, visit us at SBPdiscovery.org or on Facebook at facebook.com/SBPdiscovery and on Twitter @SBPdiscovery.

Media Contact

Susan Gammon, Ph.D.
[email protected]
858-795-5012
@sbpdiscovery

http://www.sbpdiscovery.org/

Related Journal Article

http://dx.doi.org/10.1002/jbmr.3341

Share12Tweet7Share2ShareShareShare1

Related Posts

New Study Empowers Eczema Patients to Decide Their Own Bathing Frequency

November 10, 2025
blank

Decoding Cell Type and State Through Feature Selection

November 10, 2025

Despite Interventions, Children’s Dental Health Remains Poor

November 10, 2025

Bifidobacterium Boosts Gut Health in Preterm Infants

November 9, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    315 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    207 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    139 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1303 shares
    Share 520 Tweet 325

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Study Empowers Eczema Patients to Decide Their Own Bathing Frequency

Decoding Cell Type and State Through Feature Selection

Despite Interventions, Children’s Dental Health Remains Poor

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.