• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Pre-synaptic cadherin/catenin complexes stablize post-synaptic spines in vivo

Bioengineer by Bioengineer
June 27, 2017
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Image by Dr. LI Yefei

Synapses are fundamental building blocks of neural circuits. Synapse formation requires complex regulation involving cell adhesion molecules, secreted molecules, transcription factors and so forth. For cell adhesion molecules, a critical unanswered question is whether pre- and post-synaptic partners contribute equally to synaptogenesis, or whether one side is predominant in inducing functional synapse formation and in stabilizing nascent synapses.

A recent study conducted by Dr. YU Xiang's lab at the Institute of Neuroscience of the Chinese Academy of Sciences uncovered an asymmetric role for symmetric cadherin/catenin cell adhesion complexes in functional synapse formation in the neocortex. Pre-synaptic β-catenin is predominant during functional synapse formation and mediates dendritic spine stabilization through N-cadherin-dependent anterograde trans-synaptic signaling. The effect of the cadherin/catenin complexes requires p140Cap, a novel β-catenin interacting partner. The results of this study were published in Neuron.

Using Nex-Cre mice to conditionally knockout or overexpress β-catenin in all neocortical excitatory neurons, and recording from layer 2/3 (L2/3) pyramidal neurons of the mouse barrel cortex, researchers found that β-catenin bi-directionally regulated the frequency of miniature excitatory postsynaptic currents. β-catenin overexpression promoted spinogenesis in L2/3 pyramidal neurons. Using live imaging, the researchers showed that β-catenin is required for spine stabilization and not de novo formation.

To address the question of whether the pre- or post-synaptic partner is predominant in inducing or stabilizing nascent synapses, they used distinct transgenic mice and viral injections to specifically manipulate β-catenin in post-synaptic (CaMKCreER and sparse AAV-GFP-β-cat* injection) or pre-synaptic (Scnn1a-Tg3-Cre and dense AAV-GFP-β-cat* injection) neurons, and found that β-catenin gain-of-function in pre-synaptic neurons, but not post-synaptic neurons, significantly promoted excitatory synaptic transmission and spine maturation of L2/3 pyramidal neurons.

This surprising result led researchers to test changes in the pre-synaptic loci. Using Ai34D mice that conditionally expressed synaptophysin-tdTomato, a pre-synaptic vesicle-related protein, they found that β-catenin promotes maturation of synaptophysinpuncta in pre-synaptic loci. Moreover, β-catenin bi-directionally regulated the pre-synaptic release probability of glutamatergic vesicles as measured by electrophysiological recordings. Reported β-catenin binding partners could not mediate the above-described effects.

Through co-immunoprecipitation and mass spectrometry experiments, researchers identified p140Cap, a protein known to regulate exocytosis, as a novel binding partner of β-catenin. They showed the presence of cadherin/catenin/p140Cap complexes. Further experiments demonstrated that pre-synaptic expression of p140Cap is required for excitatory synaptic transmission and spine stabilization.

These results uncovered an asymmetric role for the cadherin/catenin complex in neocortical circuit wiring -contrary to the earlier assumption of symmetry. Whether these findings mean generally a predominant role for the pre-synaptic site in functional synapse formation remains to be determined in future studies. It would also be interesting to explore whether this mechanism extends to other neural circuits.

The formation and maturation of synapses and spines are fundamental to proper neural circuit wiring and function. A better understanding of the molecular mechanisms underlying these processes is not only important for basic neuroscience, but is also of great relevance to understanding neurodevelopmental disorders characterized by synapse dysfunction, such as autism spectrum disorder.

###

Media Contact

YU Xiang
[email protected]

http://english.cas.cn/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

USC Scientists Secure $8 Million NIH Grant to Develop Innovative Alzheimer’s Drug

September 23, 2025

Exploring Factors Behind Decline of Hispanic Mortality Advantage

September 23, 2025

Provider Misperceptions, Rather Than Knowledge or Profit Motives, Fuel Inappropriate Antibiotic Overuse for Childhood Diarrhea in India

September 23, 2025

New Guidelines for Anemia Treatment in Kidney Disease

September 23, 2025
Please login to join discussion

POPULAR NEWS

  • Physicists Develop Visible Time Crystal for the First Time

    Physicists Develop Visible Time Crystal for the First Time

    69 shares
    Share 28 Tweet 17
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

USC Scientists Secure $8 Million NIH Grant to Develop Innovative Alzheimer’s Drug

Exploring Factors Behind Decline of Hispanic Mortality Advantage

Provider Misperceptions, Rather Than Knowledge or Profit Motives, Fuel Inappropriate Antibiotic Overuse for Childhood Diarrhea in India

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.