• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Powering wearable devices with high-performing carbon nanotube yarns

Bioengineer by Bioengineer
May 21, 2024
in Chemistry
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Ikoma, Japan – With the growth of the Internet of Things, sustainable solution for powering wireless sensors and devices are considered important. Thermoelectric generators, for example, which have the ability to convert waste heat into electricity can offer a sustainable solution. Researchers around the world have been working on such solutions. A research team, led by Masakazu Nakamura from Nara Institute of Science and Technology (NAIST), Japan has also been working on flexible wearable thermoelectric generators that produce electricity from body heat by sewing nanomaterial called carbon nanotubes (CNTs) into fabric.

IMAGE

Credit: Masakazu Nakamura

Ikoma, Japan – With the growth of the Internet of Things, sustainable solution for powering wireless sensors and devices are considered important. Thermoelectric generators, for example, which have the ability to convert waste heat into electricity can offer a sustainable solution. Researchers around the world have been working on such solutions. A research team, led by Masakazu Nakamura from Nara Institute of Science and Technology (NAIST), Japan has also been working on flexible wearable thermoelectric generators that produce electricity from body heat by sewing nanomaterial called carbon nanotubes (CNTs) into fabric.

Effective thermoelectric (TE) materials are characterized by high electrical conductivity enabling high electrical current and large Seebeck coefficient generating voltage by temperature difference. CNTs meet most of these requirements. Their flexibility and high mechanical strength also make them promising for various TE applications. However, the high thermal conductivity of CNTs limits their TE performance. To lower their thermal conductivity, CNTs are dispersed in a solution where they can be combined with other materials. This dispersion is then spun into CNT yarns using a wet-spinning process. However, conventional dispersion methods often entangle nanometer-thick CNT filaments, which lowers their electrical conductivity and thermoelectric performance.

Now, however, in a study published in ACS Applied Nano Materials, Nakamura, along with a PhD student Anh N. Nguyen and other members also from NAIST, introduced a new method for dispersing CNTs. By utilizing glycerol as a dispersant and polyoxyethylene(50) stearyl ether as a surfactant (a substance used to improve the spreading and wetting properties of a liquid), the researchers achieved a CNT yarn with aligned CNT bundles.

“We introduce a low-cost, fast, and environmentally friendly method for the development of flexible and fabric-type wearable thermoelectric devices,” says Nakamura.

Glycerol is highly viscous, making it an excellent medium for evenly dispersing CNTs, while the surfactant prevents the CNTs from agglomerating in the dispersion. The surfactants with oxyethylene groups also impede heat transfer by getting in between the CNT bundles.

The concentration of surfactant is crucial, as it influences both the thermal and electrical conductivity of the CNT dispersion. After testing CNT properties at various surfactant concentrations (3%, 4%, and 5%), researchers found that a 3% surfactant concentration, when combined with a solution containing glycerol and CNTs, gave the best results. The process, which only took three hours to complete and used ecofriendly chemicals, produced CNT yarn with highly aligned eight nm diameter CNT bundles with surfactant between them.

Aligning the CNTs typically increases both the electrical and thermal conductivity. However, by sandwiching surfactant molecules between CNT bundles, researchers were able to suppress heat transport. The CNT yarns had a power factor of 242 μW m−1 K−2 (reflecting performance) three times higher than that of CNT yarns previously obtained from methods that use ionic liquids as dispersants.

“The key to high performance is to unravel the entanglement of the raw CNT material and increase the degree of CNT orientation when spun from the dispersion,” explains Nakamura.

Thus, the proposed novel approach holds promise for enhancing the thermoelectric performance of CNT materials from yarns to films and bulk structures.

###

Resource

Title: Carbon nanotube yarns tailored using dispersants and surfactants for flexible and wearable thermoelectric generators

Authors: Anh N. Nguyen, Naofumi Okamoto, Ryo Abe, Aghnia D. M. Heriyanto, Nikita Kumari, Gilbert Pado, Shuto Tanimura, Yongyoon Cho, Manish Pandey, Hiroaki Benten, Masakazu Nakamura

Journal: ACS Applied Nano Materials

DOI: 10.1021/acsanm.4c00497

Information about Laboratory for Organic Electronics can be found at the following website: https://mswebs.naist.jp/LABs/greendevice/www/index_e.html

 

About Nara Institute of Science and Technology (NAIST)

Established in 1991, Nara Institute of Science and Technology (NAIST) is a national university located in Kansai Science City, Japan. In 2018, NAIST underwent an organizational transformation to promote and continue interdisciplinary research in the fields of biological sciences, materials science, and information science. Known as one of the most prestigious research institutions in Japan, NAIST lays a strong emphasis on integrated research and collaborative co-creation with diverse stakeholders. NAIST envisions conducting cutting-edge research in frontier areas and training students to become tomorrow’s leaders in science and technology.



Journal

ACS Applied Nano Materials

DOI

10.1021/acsanm.4c00497

Method of Research

Experimental study

Article Title

Carbon nanotube yarns tailored using dispersants and surfactants for flexible and wearable thermoelectric generators

Article Publication Date

1-May-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

McGill Study Identifies Montreal Snow Dumps and Inactive Landfills as Significant Methane Emitters

McGill Study Identifies Montreal Snow Dumps and Inactive Landfills as Significant Methane Emitters

October 17, 2025
Recursive Enzymatic Network Enables Multitask Molecular Processing

Recursive Enzymatic Network Enables Multitask Molecular Processing

October 17, 2025

How Focus Sharpens Sound Processing: The Brain’s Path to Better Listening

October 17, 2025

Eliminating Uncertainty in Shock Wave Predictions Through Advanced Computational Modeling

October 17, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1264 shares
    Share 505 Tweet 316
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    296 shares
    Share 118 Tweet 74
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    126 shares
    Share 50 Tweet 32
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    103 shares
    Share 41 Tweet 26

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of GMAW and SMAW on E350 Steel Properties

Unveiling Sex-Switching in Silver Pomfret Juveniles

Exploring Motor Differences in Neurodivergence: Initial Insights

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.