• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, July 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Powering the quantum revolution: Quantum engines on the horizon

Bioengineer by Bioengineer
September 27, 2023
in Chemistry
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Quantum mechanics is a branch of physics that explores the properties and interactions of iparticles at very small scale, such as atoms and molecules. This has led to the development of new technologies that are more powerful and efficient compared to their conventional counterparts, causing breakthroughs in areas such as computing, communication, and energy.  

Artist’s impression of how to generate work in the quantum regime

Credit: Mirijam Neve

Quantum mechanics is a branch of physics that explores the properties and interactions of iparticles at very small scale, such as atoms and molecules. This has led to the development of new technologies that are more powerful and efficient compared to their conventional counterparts, causing breakthroughs in areas such as computing, communication, and energy.  

At the Okinawa Institute of Science and Technology (OIST), researchers at the Quantum Systems Unit have collaborated with scientists from the University of Kaiserslautern-Landau and the University of Stuttgart to design and build an engine that is based on the special rules that particles obey at very small scales.

They have developed an engine that uses the principles of quantum mechanics to create power, instead of the usual way of burning fuel. The paper describing these results is co-authored by OIST researchers Keerthy Menon, Dr. Eloisa Cuestas, Dr. Thomas Fogarty and Prof. Thomas Busch and has been published in the journal Nature. 

In a classical car engine, usually a mixture of fuel and air is ignited inside a chamber. The resulting explosion heats the gas in the chamber, which in turn pushes a piston in and out, producing work that turns the wheels of the car.  

In their quantum engine the scientists have replaced the use of heat with a change in the quantum nature of the particles in the gas. To understand how this change can power the engine, we need to know that all particles in nature can be classified as either bosons or fermions, based on their special quantum characteristics.     

At very low temperatures, where quantum effects become important, bosons have a lower energy state than fermions, and this energy difference can be used to power an engine. Instead of heating and cooling a gas cyclically like a classical engine does, the quantum engine works by changing bosons into fermions and back again.      

“To turn fermions into bosons, you can take two fermions and combine them into a molecule. This new molecule is a boson. Breaking it up allows us to retrieve the fermions again. By doing this cyclically, we can power the engine without using heat,” Prof. Thomas Busch, leader of the Quantum Systems Unit explained.  

While this type of engine only works in the quantum regime, the team found that its efficiency is quite high and can reach up to 25% with the present experimental set up built by the collaborators in Germany.  

This new engine is an exciting development in the field of quantum mechanics and has the potential to lead to further advances in the burgeoning area of quantum technologies. But does this mean we will soon see quantum mechanics powering the engines of our cars? “While these systems can be highly efficient, we have only done a proof-of-concept together with our experimental collaborators,” explained Keerthy Menon. “There are still many challenges in building a useful quantum engine.”  

Heat can destroy the quantum effects if the temperature gets too high, so researchers must keep their system as cold as possible. However, this requires a substantial amount of energy to run the experiment at these low temperatures in order to protect the sensitive quantum state.   

The next steps in the research will involve addressing fundamental theoretical questions about the system’s operation, optimizing its performance, and investigating its potential applicability to other commonly used devices, such as batteries and sensors.



Journal

Nature

DOI

10.1038/s41586-023-06469-8

Article Title

Making statistics work: a quantum engine in the BEC-BCS crossover

Article Publication Date

27-Sep-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Cosmic Mystery: Unraveling the Enigmatic Black Hole Phenomenon

July 31, 2025
blank

New dual-mode optical imaging system provides a noninvasive breakthrough in skin cancer diagnosis

July 31, 2025

Innovative Technique Unveiled for Neutrino Detection

July 31, 2025

Engineered Enzyme Enables Precise Construction of Complex Molecules

July 31, 2025

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    59 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

McMaster Research Unveils Promising New Therapy for Liver Cancer

Greater Ecological Diversity Enhances Nutritional Resources in Fiji’s Agroforests

Climate Shifts in California: Decline in Cold Deaths Amid Rise in Heat-Related Emergencies

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.