• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Potential of 3D human breast organoid models in advancing lactation research

Bioengineer by Bioengineer
November 6, 2023
in Biology
Reading Time: 3 mins read
0
POTENTIAL RESEARCH THAT CAN BE CONDUCTED USING 3D HUMAN BREAST ORGANOID MODELS
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The 3D human breast organoid model represents state-of-the-art technology that “floats” patient-derived or stem cell-derived human breast tissue in a gel-like substance known as the matrix. The model improves the reproduction of native human breast tissue in a laboratory setting and allows researchers to study the cellular and molecular character of human breast tissue at various stages of development.

POTENTIAL RESEARCH THAT CAN BE CONDUCTED USING 3D HUMAN BREAST ORGANOID MODELS

Credit: Lee, J. F., et al.

The 3D human breast organoid model represents state-of-the-art technology that “floats” patient-derived or stem cell-derived human breast tissue in a gel-like substance known as the matrix. The model improves the reproduction of native human breast tissue in a laboratory setting and allows researchers to study the cellular and molecular character of human breast tissue at various stages of development.

In a review paper published by the KeAi journal Reproduction and Breeding, a team of researchers describe current mammary organoid research and potential studies that could be done using 3D breast organoid models.

“Many studies used mouse mammary glands to study the human mammary gland, but the mouse mammary gland is very different from human mammary glands in various aspects, such as development and chemical signaling pathways,” shares Jenny Lee, lead author of the paper. “Hence, human breast organoid models are needed to further understand the human mammary gland, including processes associated with lactation.”

Previous studies have found that human breast organoid models form structures characteristic of human breast tissue, maintain various mammary gland cell subtypes, express important breast tissue protein markers, and respond to hormone or drug treatments. For instance, a study by Qu et al. revealed that the introduction of lactation medium induced the expression of milk proteins within these organoids. Sumbal et al. further extended these findings, demonstrating that lactation medium not only induced potential milk production in breast organoids but also established that the withdrawal of lactation medium could trigger involution-like activity.

“By using 3D breast organoids, we can delve deeper into the intricate cellular and molecular processes of lactogenesis, the post-pregnancy transformation of milk-secreting cell specialization and milk production, as well as involution—the regression of the lactating mammary gland to its pre-pregnancy state,” says Lee.

The authors believe that breast organoids may even contribute to refining human milk formula to cater to specific nutritional requirements, ensuring the healthy growth of infants.

###

Contact the author:Jenny Lee, The University of California Los Angeles, College of Letters and Science, CA, 90048, USA, [email protected], www.linkedin.com/in/jennyforestlee

The publisher KeAi was established by Elsevier and China Science Publishing & Media Ltd to unfold quality research globally. In 2013, our focus shifted to open access publishing. We now proudly publish more than 100 world-class, open access, English language journals, spanning all scientific disciplines. Many of these are titles we publish in partnership with prestigious societies and academic institutions, such as the National Natural Science Foundation of China (NSFC).

 



Journal

Reproduction and Breeding

DOI

10.1016/j.repbre.2023.08.003

Method of Research

Commentary/editorial

Subject of Research

Human tissue samples

Article Title

Human breast organoid models for lactation research.

COI Statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Share12Tweet8Share2ShareShareShare2

Related Posts

Thyroid Peroxidase Variants as Subclinical Hypothyroidism Markers

Thyroid Peroxidase Variants as Subclinical Hypothyroidism Markers

November 12, 2025
Tailored ML Models Enhance AAA Outcome Predictions

Tailored ML Models Enhance AAA Outcome Predictions

November 12, 2025

Optimized Bacillus Production of Hyaluronic Acid

November 12, 2025

New Role for PPARs in Bovine Hepcidin Regulation

November 11, 2025

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    316 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    208 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    140 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1305 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Repurposed Antibiotic Demonstrates Potential in Treating Central Nervous System Tuberculosis, Finds NUS Medicine Study

Next-Gen Wireless Vital Monitoring in NICU

Lesser Omental Panniculitis: An Acute Abdomen Case

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.