• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Potential new treatment combats COPD and other lung diseases

Bioengineer by Bioengineer
February 13, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New research published online in The FASEB Journal reveals a potential drug to combat the life-threatening effects of chronic obstructive pulmonary disease (COPD). Specifically, the study investigated the efficacy of a receptor for advanced glycan end-products (RAGE)-specific antagonist chemical compound, FPS-ZM1, in mice, and found that this compound reverses the inflammatory response and has a protective role in COPD.

"RAGE disturbances in pulmonary disorders are precise and effective strategies with beneficial clinical effects," said Se-Ran Yang, D.V.M., Ph.D., a researcher involved in the work and an associate professor at the Department of Thoracic and Cardiovascular Surgery in the School of Medicine at Kangwon National University in Gangwon, Korea. "Blockade of RAGE as a novel clinical therapeutic for COPD ameliorates emphysema/COPD development and progression."

In their study, Yang and colleagues investigated the efficacy of RAGE-specific antagonist FPS-ZM1 administration in both in vivo and in vitro COPD models to determine the molecular mechanism by which RAGE influences COPD. The researchers injected mice with an in vivo COPD inducer and the RAGE antagonist FPS-ZM1. Then they assessed the infiltrated inflammatory cells and their production of cytokines. Cellular expression of RAGE, initiating inflammatory response, and soluble RAGE, acting as a "decoy," was determined in protein, serum, and bronchoalveolar lavage fluid in the mice, as well as in the serum of human donors and patients with COPD. They analyzed downstream damage-associated molecular patterns (DAMPs) and danger signals in vivo and in vitro and in patients with COPD, and found that RAGE was associated with the up-regulation of DAMP-related signaling pathways via Nrf2 (a master regulator of the total antioxidant system in humans). FPS-ZM1 administration also significantly reversed emphysematous lung symptoms in mice.

"No one expected the pathogenic roots of COPD to be simple, and this study gives us an indication of the complexity involved.," said Thoru Pederson, Ph.D., Editor-in-Chief of The FASEB Journal. "The current pharmacological armamentarium is limited, and studies like this are thus extremely valuable as a foundation."

###

Submit to The FASEB Journal by visiting http://fasebj.msubmit.net, and receive monthly highlights by signing up at http://www.faseb.org/fjupdate.aspx. The FASEB Journal is published by the Federation of the American Societies for Experimental Biology (FASEB). It is one of the world's most cited biology journals according to the Institute for Scientific Information and has been recognized by the Special Libraries Association as one of the top 100 most influential biomedical journals of the past century.

Details: Hanbyeol Lee, Jeong-Ran Park, Woo Jin Kim, Isaac K. Sundar, Irfan Rahman, Sung-Min Park, and Se-Ran Yang. Blockade of RAGE ameliorates elastase-induced emphysema development and progression via RAGE-DAMP signaling. FASEB J. doi: 10.1096/fj.201601155R ; http://www.fasebj.org/content/early/2017/02/01/fj.201601155R.abstract

Media Contact

Cody Mooneyhan
[email protected]
301-634-7104
@fasebopa

http://www.faseb.org

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Enhanced Copper Detection with Iron Oxide-Graphite Sensors

September 22, 2025
Micro-LEDs Drive Transparent, Free-Form, Near-Eye Displays

Micro-LEDs Drive Transparent, Free-Form, Near-Eye Displays

September 22, 2025

Key Drivers of Corporate Governance in Burundi’s Cooperatives

September 21, 2025

Revolutionizing Sustainable Construction: The Role of Cardboard and Earth

September 21, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhanced Copper Detection with Iron Oxide-Graphite Sensors

Micro-LEDs Drive Transparent, Free-Form, Near-Eye Displays

Key Drivers of Corporate Governance in Burundi’s Cooperatives

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.