• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Potential new drug class hits multiple cancer cell targets, boosting efficacy and safety

Bioengineer by Bioengineer
February 1, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

MYC is a regulator gene. It controls the expression of other genes and codes transcription factors or proteins involved in many fundamental cellular processes. It's also among the most frequently altered genes found in cancer, making it a profoundly attractive target for cancer therapies.

But MYC has proved very complicated and an elusive therapeutic target. In a new paper published this week in PNAS, researchers at the University of California San Diego School of Medicine and Moores Cancer Center, in collaboration with colleagues at Rady Children's Hospital-San Diego, the University of Colorado School of Medicine and SignalRx, a San Diego-based biopharmaceutical company, describe a potential new class of anti-cancer drugs that inhibit two or more molecular targets at once, maximizing therapeutic efficiency and safety.

"Most anti-cancer drugs have a single target. They try to do one thing, such as block a single receptor or signaling pathway," said study co-senior author Donald L. Durden, MD, PhD, professor in the Department of Pediatrics at UC San Diego School of Medicine and associate director for pediatric oncology at Moores Cancer Center at UC San Diego Health. "This paper is proof-of-concept of a completely different mode of drug discovery clearly separated from the standard practice of one drug, one target."

Specifically, Durden and colleagues engineered a small molecule called SF2523 in silico, using molecular modeling crystal structure and nuclear magnetic resonance imaging, to simultaneously disrupt two key MYC-mediating factors that promote cancer cell growth. Those two factors are PI3K, an enzyme, and BRD4, a protein.

In cell and mouse models, they found SF2523 concomitantly inhibited PI3K and BRD4, blocking MYC activation and expression and markedly inhibiting cancer growth and metastasis, with improved efficacy and less toxicity to the host.

"This is a 'first in class' approach to achieve a maximum inhibition of MYC in the treatment of the multitude of cancers known to be driven by the MYC oncogene," said Durden. "These findings suggest that dual-activity inhibitors are a highly promising lead compound for developing new anticancer therapeutics."

###

Co-authors include: Forest H. Andrews, and co-senior author Tatiana G. Kutateladze, University of Colorado School of Medicine; Alok R. Singh, and Shweta Joshi, UC San Diego; and Guillermo A. Morales, and Joseph R. Garlich, SignalRx.

Disclosure: Donald Durden, MD, PhD, is co-founder and a member of the board of directors and scientific advisory board of SignalRx. He also has an equity interest in the company.

Media Contact

Scott LaFee
[email protected]
858-249-0456
@UCSanDiego

http://www.ucsd.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Decoding the Genome of a Cultivated Megaphage

September 30, 2025

Link Between Weight Bias and Adolescent Eating Disorders

September 30, 2025

GM-CSF-Driven CD301b+ Lung DCs Promote Allergen Tolerance

September 30, 2025

Immune Cell ‘Signatures’ May Pave the Way for Personalized Treatment in Critically Ill Patients

September 30, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    87 shares
    Share 35 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    73 shares
    Share 29 Tweet 18
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    59 shares
    Share 24 Tweet 15
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding the Genome of a Cultivated Megaphage

Link Between Weight Bias and Adolescent Eating Disorders

GM-CSF-Driven CD301b+ Lung DCs Promote Allergen Tolerance

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.