• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Potential new applications stem from controlling particles’ spin configurations

Bioengineer by Bioengineer
April 12, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Fermions are ubiquitous elementary particles. They span from electrons in metals, to protons and neutrons in nuclei and to quarks at the sub-nuclear level. Further, they possess an intrinsic degree of freedom called spin with only two possible configurations, either up or down. In a new study published in EPJ B, theoretical physicists explore the possibility of separately controlling the up and down spin populations of a group of interacting fermions. Their detailed theory describing the spin population imbalance could be relevant, for instance, to the field of spintronics, which exploits polarised spin populations.

Imbalanced Fermi particle mixtures occur in matter like, for example, semiconductors placed in a magnetic field, in nuclear matter, and in the plasma of neutron stars, which combines the elementary sub-particles quarks and gluons. Pierbiagio Pieri and Giancarlo Calvanese Strinati from the University of Camerino, Italy, focused on an interacting fermion system where the up and down spin populations are imbalanced. They extended the proof of a theorem that was originally conceived for the exact theory of a Fermi liquid with equal populations of up and down spin, called the Luttinger theorem, to these imbalanced systems.

Previous experimental observations involved separately controlling the number of fermions with a given spin, leading to free movement with no viscosity in the gas particles, reaching a superfluid state. The work by Wolfgang Ketterle and his group at MIT, USA, in 2008, also demonstrated that the difference between two spin populations can be made so large that superfluidity is destroyed and the system remains normal even at zero temperature.

In turn, this latest theoretical work introduces a constraint that is key to numerical calculations for such large quantum many-body systems, namely that the radii of the two Fermi spheres, which characterise the non-interacting systems of spin-up and spin-down fermions, are separately preserved when the interaction between the spin-up and spin-down fermions is initiated.

###

Reference:

P. Pieri and G. C. Strinati (2017), Luttinger theorem and imbalanced Fermi systems, Eur. Phys. J. B 90:68, DOI 10.1140/epjb/e2017-80071-2

Media Contact

Sabine Lehr
[email protected]
49-622-148-78336
@SpringerNature

http://www.springer.com

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Genetic Insights into Sheep Fur Variations Uncovered

Genetic Insights into Sheep Fur Variations Uncovered

November 16, 2025

Semaglutide Proven Effective for Weight Loss in Veterans

November 16, 2025

Meat Processing Alters Brain Connectivity During Visual Evaluation

November 16, 2025

Comparing Nutritional Risk Tools for Older Patients’ Health

November 16, 2025
Please login to join discussion

POPULAR NEWS

  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    210 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    201 shares
    Share 80 Tweet 50
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    318 shares
    Share 127 Tweet 80
  • Neurological Impacts of COVID and MIS-C in Children

    88 shares
    Share 35 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Genetic Insights into Sheep Fur Variations Uncovered

Semaglutide Proven Effective for Weight Loss in Veterans

Meat Processing Alters Brain Connectivity During Visual Evaluation

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.