• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

Potential diabetes treatment advances

Bioengineer.org by Bioengineer.org
January 26, 2018
in Headlines, Health, Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

SC-B-cells-in-capsules605

Researchers at MIT’s David H. Koch Institute for Integrative Cancer Research, in collaboration with scientists at the Harvard Stem Cell Institute (HSCI) and several other institutions, have developed an implantable device that in mice shielded insulin-producing beta cells from immune system attack for six months — a substantial proportion of life span.

This bioengineering work by professors Daniel G. Anderson and Robert S. Langer brings the promise of a possible cure for type 1 diabetes within striking distance of phase 1 clinical trials, providing a way to implant in diabetics insulin-producing beta cells developed from stem cells in the laboratory of HSCI co-director Doug Melton.

“This report is an important step forward, in an animal model, because it shows that there may be a way to overcome one of the major hurdles that have stood in the way of a cure for type 1 diabetes,” said Melton, Harvard’s Xander University Professor and a Howard Hughes Medical Institute Investigator. “Now, thanks to the outstanding work of Dan Anderson and Bob Langer at MIT, Gordon Weir at the Joslin Diabetes Center and HSCI, and Dale Greiner at the University of Massachusetts, and our other essential collaborators, we have stem cell-derived beta cells that can provide insulin in a device that appears capable of protecting them from immune attack.”

The work was published online Monday in papers in two journals, Nature Medicine and Nature Biotechnology. Anderson said that he and his colleagues report in the latter paper that when implanted without cells in primates, the new device proved to be “biocompatible for six or eight months, without provoking an inflammatory response” or any other ill effect.

“We are excited by this new technology and are working hard to advance it to the clinic,” said Anderson, the Samuel A. Goldblith Professor of Applied Biology at MIT. “These papers represent seven or eight years of work” at MIT, he said, adding that “we started working with Doug a few years ago when he began producing beta cells from human embryonic stem cells (hESC).”

DGA-Headshot570

“We are excited by this new technology and are working hard to advance it to the clinic,” said Daniel Anderson, the Samuel A. Goldblith Professor of Applied Biology at MIT.

The Juvenile Diabetes Research Foundation, which along with The Leona M. and Harry B. Helmsley Charitable Trust supported the MIT research, estimates that up to 3 million Americans suffer from type 1 diabetes, an autoimmune disease in which the immune system kills off the insulin-producing beta cells in the pancreas. Daily injections of insulin are the primary treatment, but are only partially successful in regulating patients’ metabolism.

When beta cells are functioning normally, they are part of an exquisitely fine-tuned system, providing precisely the amount of insulin the body needs. Injections cannot come close to mimicking the body’s own insulin-production system, however, and as a result patients can develop complications ranging from blindness to heart disease to loss of limbs. Type 1 diabetes causes or contributes to hundreds of thousands of deaths annually.

It is believed that if implanted beta cells could be shielded from immune attack, and would respond to the body’s own signals for insulin, they would be likely to eliminate most, or even all, the complications of the disease, and would, in effect, serve as a cure.

Some patients with type 2 diabetes, which has reached epidemic proportions in the United States and around the globe, also become insulin dependent, and might benefit from the implantation of stem cell-derived beta cells.

Story Source:

The above post is reprinted from materials provided by Harvard News

Share12Tweet7Share2ShareShareShare1

Related Posts

Tiny Genetic Light Switches Revolutionize Disease Control

Tiny Genetic Light Switches Revolutionize Disease Control

September 9, 2025

New Open-Source Data Platform Launched to Advance Lung Cancer Genetics Research

September 8, 2025

AI Reveals Stress Levels in Farmed Amazonian Fish, New Study Shows

September 8, 2025

Overcoming Resistance Mutations and the Blood–Brain Barrier: Major Challenges in Targeted Therapy for Brain Metastases in Non-Small Cell Lung Cancer

September 8, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Tiny Genetic Light Switches Revolutionize Disease Control

New Open-Source Data Platform Launched to Advance Lung Cancer Genetics Research

AI Reveals Stress Levels in Farmed Amazonian Fish, New Study Shows

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.