• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Potential assay artefacts in anti-malarial screening documented

Bioengineer by Bioengineer
October 9, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: (Courtesy: Renugah Naidu and Gowtham Subramanian, Singapore University of Technology & Design)

Malaria remains an economic and health burden to the developing world. As plasmodium, the causative agent of malaria, is acquiring rapid resistance against currently used drugs, identification of new classes of anti-malarials remains an urgent need.

Potential anti-malarials include small molecules, peptides, antibodies or plant extracts with likely medicinal properties. These agents are often prepared in the presence of additional constituents such as buffers, detergents or preservatives to ensure stability and solubility. However, chemical or physical properties of these constituents can impact the assay conclusions. At present, there is no literature on the toxic inhibitory effects of such molecules on plasmodium development.

A research group led by Assistant Professor Rajesh Chandramohanadas from the Singapore University of Technology and Design (SUTD) documented the permissible limits of a number of chemicals that are often part of anti-malarial efficacy tests. Their results provide a previously undetermined dataset on drug reconstitution conditions at which both the red cell integrity and plasmodium growth and proliferation are not compromised.

The SUTD team first performed literature survey to shortlist 14 common chemicals which were then tested against plasmodium in vitro cultures. From these experiments, they estimated the maximum allowable concentration of these chemicals compatible with the assay with no parasite killing effect. Further, they validated that the estimated permissible limits of these chemicals caused no harm to intracellular or extracellular parasites, allowing normal parasitive survival and proliferation. Through bio-physical and microscopic measurements, they also demonstrated that human red blood cells used as hosts are not damaged and fully capable of supporting infection for several cycles.

"This dataset may serve as a valuable reference tool to the parasitology community", Dr. Chandramohanadas stated. "For example, when structure-activity relationship of synthetic analogues of a chosen molecule under different solubilising conditions are to be tested and compared, artefacts caused by the recipe may contribute to erroneous readings", he added.

###

This research was published in Scientific Reports and the first authors are SUTD graduate students Ms. Renugah Naidu and Mr. Gowtham Subramanian. Other co-authors in the study are Ms. Bena Lim and Professor Lim Chwee Teck from the Singapore-MIT Alliance for Research and Technology (SMART) Centre and National university of Singapore (NUS). This research was funded by Agency for Science, Technology and Research (A*Star), Singapore.

Media Contact

Melissa Koh
[email protected]
65-649-98742

http://www.sutd.edu.sg

Related Journal Article

http://dx.doi.org/10.1038/s41598-018-33226-z

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Unveiling Virulence Strategies in Sugarcane Smut Pathogen

November 5, 2025
Scripps Research Team Discovers Sugar Molecules Key to Initiating Placental Formation

Scripps Research Team Discovers Sugar Molecules Key to Initiating Placental Formation

November 5, 2025

Identifying Heat-Tolerant White Fulani Cows Using TOPSIS

November 5, 2025

Sex-Based Cognitive Responses to PM2.5 Risk

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1299 shares
    Share 519 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

High BMI Linked to Increased Glycated Albumin Levels

[6]-Shogaol Inhibits 3CLpro and SARS-CoV-2 Infection

Psychological Factors Influencing Nursing Students’ Success

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.