• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Potential assay artefacts in anti-malarial screening documented

Bioengineer by Bioengineer
October 9, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: (Courtesy: Renugah Naidu and Gowtham Subramanian, Singapore University of Technology & Design)

Malaria remains an economic and health burden to the developing world. As plasmodium, the causative agent of malaria, is acquiring rapid resistance against currently used drugs, identification of new classes of anti-malarials remains an urgent need.

Potential anti-malarials include small molecules, peptides, antibodies or plant extracts with likely medicinal properties. These agents are often prepared in the presence of additional constituents such as buffers, detergents or preservatives to ensure stability and solubility. However, chemical or physical properties of these constituents can impact the assay conclusions. At present, there is no literature on the toxic inhibitory effects of such molecules on plasmodium development.

A research group led by Assistant Professor Rajesh Chandramohanadas from the Singapore University of Technology and Design (SUTD) documented the permissible limits of a number of chemicals that are often part of anti-malarial efficacy tests. Their results provide a previously undetermined dataset on drug reconstitution conditions at which both the red cell integrity and plasmodium growth and proliferation are not compromised.

The SUTD team first performed literature survey to shortlist 14 common chemicals which were then tested against plasmodium in vitro cultures. From these experiments, they estimated the maximum allowable concentration of these chemicals compatible with the assay with no parasite killing effect. Further, they validated that the estimated permissible limits of these chemicals caused no harm to intracellular or extracellular parasites, allowing normal parasitive survival and proliferation. Through bio-physical and microscopic measurements, they also demonstrated that human red blood cells used as hosts are not damaged and fully capable of supporting infection for several cycles.

"This dataset may serve as a valuable reference tool to the parasitology community", Dr. Chandramohanadas stated. "For example, when structure-activity relationship of synthetic analogues of a chosen molecule under different solubilising conditions are to be tested and compared, artefacts caused by the recipe may contribute to erroneous readings", he added.

###

This research was published in Scientific Reports and the first authors are SUTD graduate students Ms. Renugah Naidu and Mr. Gowtham Subramanian. Other co-authors in the study are Ms. Bena Lim and Professor Lim Chwee Teck from the Singapore-MIT Alliance for Research and Technology (SMART) Centre and National university of Singapore (NUS). This research was funded by Agency for Science, Technology and Research (A*Star), Singapore.

Media Contact

Melissa Koh
[email protected]
65-649-98742

http://www.sutd.edu.sg

Related Journal Article

http://dx.doi.org/10.1038/s41598-018-33226-z

Share12Tweet7Share2ShareShareShare1

Related Posts

Engineered Gut Bacteria Enhance Survival Rates in Colorectal Cancer Patients

Engineered Gut Bacteria Enhance Survival Rates in Colorectal Cancer Patients

September 22, 2025
blank

Unveiling Toxocara canis Excretory-Secretory Products’ Impact

September 22, 2025

Oxaloacetate Sensing Boosts Innate Flu Defense

September 22, 2025

Nasal Staph Affects Mice Mood by Hormone Breakdown

September 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unraveling Copper’s Redox Role in Ullmann Reactions

Koala Stress Levels Connected to Increased Disease Risk

Metabolic Markers Identified as Potential Predictors of Breast Cancer Risk in High-Risk Women

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.