• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Possible target for treating and preventing osteoarthritis found in little-studied protein

Bioengineer by Bioengineer
October 14, 2022
in Biology
Reading Time: 3 mins read
0
RORβ activity supports chondrocyte formation
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

JUPITER, Fla. — Wear and tear on joints can lead to inflammation, breakdown of cartilage and development of osteoarthritis. Scientists at UF Scripps Biomedical Research have found a possible new target to fight this painful cascade.

RORβ activity supports chondrocyte formation

Credit: Louis Brems, UF

JUPITER, Fla. — Wear and tear on joints can lead to inflammation, breakdown of cartilage and development of osteoarthritis. Scientists at UF Scripps Biomedical Research have found a possible new target to fight this painful cascade.

In a study published Thursday in the journal PLOS One,biochemist Patrick Griffin, Ph.D., and colleague Mi Ra Chang, Ph.D., describe a specific protein that manages activities within chondrocytes, a critical cell type that maintains healthy cartilage in joints.

As people age and stress their joints, their chondrocytes begin to fail. The UF Scripps team found that activating a specific protein in these cells called RORβ (beta) could restore multiple factors needed for smooth joints to healthier levels, helping to control inflammation. Activating RORβ could thus present a useful new strategy to prevent or delay development of the degenerative joint disease osteoarthritis, said Griffin, a professor of molecular medicine and scientific director of UF Scripps Biomedical Research.

“People need an osteoarthritis medication that addresses the root cause of cartilage damage and depletion as there currently are no disease-modifying drugs for what is the No. 1 cause of disability in the United States,” Griffin said. “While our work is in the early stages, our study suggests that the nuclear receptor RORβ could present a novel therapeutic target to protect cartilage damage and perhaps turn on cartilage regeneration.”

RORβ, short for “retinoic acid receptor-related orphan receptor beta,” is a type of protein called a nuclear receptor. In our cells, genes switch between periods of activity and inactivity. When nuclear receptors bind to DNA, that activates the cell’s process of transcribing genes into proteins. RORβ has been linked to development of the eye’s retina during fetal growth, and it can influence circadian rhythms by controlling clock genes. But its role in maintaining cartilage health was unclear.

Griffin has studied causes of bone diseases for many years. He zeroed in on RORβ for several reasons. While few studies have been focused on this receptor, some had shown correlation between the receptor’s activity and bone loss. So he and Chang set out to better understand it. Chang engineered cell lines to enable the studies.

“To our surprise, the gene program upregulated by increase in RORβ activity was supportive of the formation of chondrocytes, anti-inflammatory, and protective against cartilage degradation,” Chang said.

 Griffin said the team has launched additional studies because of the enormous need for osteoarthritis solutions. In the United States, an estimated 32 million people live with the painful condition.

“This study suggests RORβ could be an attractive therapeutic target. However, there’s much more we need to unravel,” Griffin said. “Specifically, we want to understand more about the mechanism by which RORβ impacts chondrocytes and blunts the inflammatory signals that lead to cartilage destruction.”

 



Journal

PLoS ONE

DOI

10.1371/journal.pone.0268663

Method of Research

Experimental study

Subject of Research

Cells

Article Title

“RORβ modulates a gene program that is protective against articular cartilage damage

Article Publication Date

13-Oct-2022

COI Statement

The authors have declared that no competing interests exist.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Collaboration with Kenya’s Turkana Community Uncovers Genes Behind Desert Adaptation

September 18, 2025
blank

Cracking the Code of the Selfish Gene: From Evolutionary Cheaters to Breakthroughs in Disease Control

September 18, 2025

New Model Enables Precise Predictions of Forest Futures

September 18, 2025

Ancient Insects Thrive in South American Amber Deposit, Revealing a Vibrant Paleoecosystem

September 18, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Severe Pregnancy Sickness Linked to Over 50% Increase in Risk of Mental Health Disorders

Transforming Sewage Sludge: Phosphorus Release Dynamics

Tirzepatide Enhances Blood Sugar Regulation in Adolescents with Type 2 Diabetes Unresponsive to Current Treatments (SURPASS-PEDS Trial)

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.