• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Portland State U research shows some viruses can infect even after major mutations

Bioengineer by Bioengineer
March 23, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Portland State University

Portland State University researchers have found that only about half the genes in a specific virus affecting single cell organisms is needed to infect a host. This means the virus can undergo major mutations without losing its ability to survive and infect.

The research, headed by PSU biology professor Kenneth Stedman, shows how resilient and stable viruses can be. It also gives new insights into the structure of HIV and other viruses, how they are made and the challenges of fighting them.

"If you get rid of some of a virus's genes, you change the structure but it can still infect," Stedman said. "Our next step will be to find out what makes these viruses so stable, and that will give us insights into all kinds of diseases, from AIDS to Alzheimer's."

The viruses Stedman studied were taken from highly acidic, near-boiling volcanic hot springs. Stedman, co-founder of PSU's Center for Life in Extreme Environments, said studying organisms from such hostile conditions helps scientists understand the molecular basis of survivability under extreme conditions and maybe the origins of life itself.

###

Stedman's study, funded by the National Science Foundation, will be featured as a Spotlight in the May 2017 issue of the Journal of Virology. The accepted manuscript is available online at http://jvi.asm.org/content/early/2017/01/26/JVI.02406-16.full.pdf.

Media Contact

Kenneth Stedman
[email protected]
503-725-3253

http://www.pdx.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

KDM4B Regulates ERα in Vascular Cell Calcification

October 8, 2025

Breakthrough Blood Test for ME/Chronic Fatigue Syndrome Unveiled

October 8, 2025

Cube-Shaped CoSe2/Fe7Se8 Composites Boost Supercapacitor Performance

October 8, 2025

Calorie Labeling Associated with 2% Average Decrease in Menu Item Energy Content

October 8, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    996 shares
    Share 398 Tweet 249
  • New Study Reveals the Science Behind Exercise and Weight Loss

    99 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    95 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    77 shares
    Share 31 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

KDM4B Regulates ERα in Vascular Cell Calcification

Breakthrough Blood Test for ME/Chronic Fatigue Syndrome Unveiled

Cube-Shaped CoSe2/Fe7Se8 Composites Boost Supercapacitor Performance

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.