• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Portable sensor technology aims to quickly detect foodborne contaminants outside the lab

Bioengineer by Bioengineer
June 3, 2022
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

An international team led by a University of Massachusetts Amherst food and environmental virologist has received a $750,000 USDA National Institute of Food and Agriculture (NIFA) partnership grant to develop and test portable, rapid biosensors capable of detecting noroviruses and mycotoxins in foods and agricultural products. It is among the first partnership grants awarded with an international partner by the USDA. 

Lead investigator

Credit: UMass Amherst

An international team led by a University of Massachusetts Amherst food and environmental virologist has received a $750,000 USDA National Institute of Food and Agriculture (NIFA) partnership grant to develop and test portable, rapid biosensors capable of detecting noroviruses and mycotoxins in foods and agricultural products. It is among the first partnership grants awarded with an international partner by the USDA. 

Noroviruses are the leading cause of foodborne illness globally, and are highly contagious, causing pandemics every few years, says lead investigator Matthew Moore, assistant professor of food science. Moore will work with UMass Amherst food science colleague John Gibbons, a fungi expert, and food science Ph.D. candidate Sloane Stoufer in the Moore Lab. The UMass team will collaborate with senior lecturer and principal investigator Marloes Peeters and postdoctoral research associate Jake McClements at Newcastle University’s School of Engineering in England.  

“People can get really sick from foods that contain viruses and toxins,” Moore says. “We need a way to quickly and easily find out if a food contains these contaminants in a cheap but effective way – without the need to go back to a separate lab to do the testing.”

Mycotoxins are toxic substances produced by fungi that can grow in warm and humid conditions on crops and food, in particular in many grains, produce, nuts, seeds and spices. They represent a growing threat to public health in the face of climate change trends and increased consumption of plant-based foods, Moore says. 

“One of the interesting things about mycotoxins as a foodborne contaminant is that they’re often not very acute, so you’re less likely to notice it,” Moore says. “Oftentimes, the damage they do is more chronic, and they will mess with the kidneys and liver especially and can promote cancer.”

That makes early detection all the more important. “With this technology we’re trying to create a cheap, highly durable, and potentially reusable sensor that can detect these contaminants,” Moore says. 

The UMass Amherst food scientists got together with engineers at Newcastle University to seek a rare international partnership grant from the USDA’s NIFA. The British engineers are world leaders in electrochemical sensing techniques based on generating molecularly imprinted polymer nanoparticles (nanoMIPs). 

“The grant enables an unprecedented international exchange,” Moore says. The UMass team will learn more about the application of nanoMIPs when they visit the Peeters Lab at Newcastle, and the UK team will be hosted by Moore’s Applied and Environmental Virology Lab to gain knowledge about virological, microbiological and food science techniques.

“This nanoMIP-based sensing technology has numerous advantages,” Moore says. “It is very stable in intense conditions, and very portable. It is also quite inexpensive, a very important consideration in testing for foods.”

NanoMIP-based electrochemical sensing is an exciting new application for agricultural targets. “The technology has already shown promise for other targets, including SARS-CoV-2, and we hope to further explore its potential for human noroviruses and mycotoxins,” Moore says.



Share12Tweet8Share2ShareShareShare2

Related Posts

Trio Binning Reveals Haplotype-Resolved Horse Genomes

September 2, 2025

Colony Growth and Zooid Arrangement in Porpita porpita

September 2, 2025

Wildlife Disease Surveillance: West Africa’s Current Landscape

September 1, 2025

Unraveling Odorant Proteins in Kissing Bugs

September 1, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Do people and monkeys see colors the same way?

    112 shares
    Share 45 Tweet 28

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionizing Mental Health: How Psychedelic Research is Changing Treatment Worldwide

Social Anxiety Disrupts Neutral Word Processing

Autism Proteins Maintain Striatal Asymmetry in Mice

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.