• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Portable DNA device can detect tree pests in under two hours

Bioengineer by Bioengineer
July 20, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New method tests for harmful species like the Asian gypsy moth and sudden oak death pathogen

IMAGE

Credit: Paul H Joseph/UBC

Asian gypsy moths feed on a wide range of important plants and trees. White pine blister rust can kill young trees in only a couple of years. But it’s not always easy to detect the presence of these destructive species just by looking at spots and bumps on a tree, or on the exterior of a cargo ship.

Now a new rapid DNA detection method developed at the University of British Columbia can identify these pests and pathogens in less than two hours, without using complicated processes or chemicals – a substantial time savings compared to the several days it currently takes to send samples to a lab for testing.

“Sometimes, a spot is just a spot,” explains forestry professor Richard Hamelin, who designed the system with collaborators from UBC, Natural Resources Canada and the Canadian Food Inspection Agency. “Other times, it’s a deadly fungus or an exotic bug that has hitched a ride on a shipping container and has the potential to decimate local parks, forests and farms. So you want to know as soon as possible what you’re looking at, so that you can collect more samples to assess the extent of the invasion or begin to formulate a plan of action.”

Hamelin’s research focuses on using genomics to design better detection and monitoring methods for invasive pests and pathogens that threaten forests. For almost 25 years, he’s been looking for a fast, accurate, inexpensive DNA test that can be performed even in places, like forests, without fast Internet or steady power supply.

He may have found it. The method, demonstrated in a preview last year for forestry policymakers in Ottawa, is straightforward. Tiny samples like parts of leaves or branches, or insect parts like wings and antennae, are dropped into a tube and popped into a small, battery-powered device (the Franklin thermo cycler, made by Philadelphia-based Biomeme). The device checks to see if these DNA fragments match the genomic material of the target species and generates a signal that can be visualized on a paired smartphone.

“With this system, we can tell with nearly 100 per cent accuracy if it is a match or not, if we’re looking at a threatening invasive species or one that’s benign,” said Hamelin. “We can analyze up to nine samples from the same or different species at a time, and it’s all lightweight enough–the thermocycler weighs only 1.3 kilos–to fit into your backpack with room to spare.”

The method relies on PCR testing, the method that is currently also the gold standard for COVID-19. PCR testing effectively analyzes even tiny amounts of DNA by amplifying (through applying heating and cooling cycles) a portion of the genetic material to a level where it can be detected.

Hamelin’s research was supported by Genome Canada, Genome BC and Genome Quebec and published in PLOS One. The UBC team, including lead author Arnaud Capron, tested this approach on species such as the Asian gypsy moth, white pine blister rust and sudden oak death pathogen, which are listed among the most destructive invasive pests worldwide.

“Our forestry, agriculture and horticulture are vital industries contributing billions of dollars to Canada’s economy so it’s essential that we protect them from their enemies,” added Hamelin. “With early detection and steady surveillance, we can ensure that potential problems are nipped, so to speak, in the bud.”

###

Images: https://www.dropbox.com/sh/lpkp3k0zcd961lu/AADdiTn3Vh-4TrTcsXs3nuIUa?dl=0

Media Contact
Lou Corpuz-Bosshart
[email protected]

Original Source

https://news.ubc.ca/2020/07/20/portable-dna-device-can-detect-tree-pests-in-under-two-hours/

Related Journal Article

http://dx.doi.org/10.1371/journal.pone.0226863

Tags: AgricultureFertilizers/Pest ManagementForestryPlant Sciences
Share13Tweet8Share2ShareShareShare2

Related Posts

How Dangerous Bacteria Take Over and Damage Crop Plants

How Dangerous Bacteria Take Over and Damage Crop Plants

September 10, 2025
Tropical Bug’s Mysterious Flag-Waving Revealed as Clever Anti-Predator Strategy

Tropical Bug’s Mysterious Flag-Waving Revealed as Clever Anti-Predator Strategy

September 10, 2025

Fetal and Maternal Cells: The Evolution of Cooperation and Competition in Life’s Earliest Partnership

September 10, 2025

Phage Research: Breakthrough Discoveries Unveiled!

September 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    61 shares
    Share 24 Tweet 15
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Wertheim UF Scripps Scientists Receive $15.7 Million in New Research Grants

Study Finds Stable Representation Crucial for Success in Interorganizational Health Care Collaborations

Unveiling the True Mechanisms of Catalysis in Metallic Nanocatalysts

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.