• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Popular antioxidant likely ineffective

Bioengineer by Bioengineer
March 6, 2015
in Health
Reading Time: 2 mins read
1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The popular dietary supplement ubiquinone, also known as Coenzyme Q10, is widely believed to function as an antioxidant, protecting cells against damage from free radicals. But a new study by scientists at McGill University finds that ubiquinone is not a crucial antioxidant — and that consuming it is unlikely to provide any benefit.

The findings, by a team led by Professor Siegfried Hekimi in McGill’s Department of Biology, are published today (March 6) in Nature Communications.

Ubiquinone is a lipid-like substance found naturally in all cells of the body. Cells need it to produce energy from nutrients and oxygen — a function performed by tiny structures, known as mitochondria, within cells. Because it was also thought to function as an antioxidant, ubiquinone has been recommended for a variety of ills and as an anti-aging supplement; global sales of the substance are estimated to amount to hundreds of millions of dollars a year.

“Our findings show that one of the major anti-aging antioxidant supplements used by people can’t possibly act as previously believed,” Hekimi says. “Dietary supplements cost a lot of money to patients throughout the world – money that would be better spent on healthy food. What’s more, the hope for a quick fix makes people less motivated to undertake appropriate lifestyle changes.”

In order to study how energy metabolism affects aging, the McGill researchers created the first strain of mice in which scientists are able to gradually eliminate ubiquinone — and then to restore it at will to normal levels. Because of ubiquinone’s role in energy production, loss of the substance in the mice led to severe sickness and early death. But the researchers were surprised to find no signs of elevated oxidative damage to cell membranes or DNA from free radicals, the sometimes-harmful molecules created by the oxygen chemistry during metabolism. The team also determined that this unexpected lack of damage didn’t stem from deployment of some other antioxidant strategies by the animals.

At the same time, the research yielded new insights into the importance of ubiquinone in helping mitochondria produce energy. “Many patients are sick because their mitochondria don’t work properly, including because they don’t contain enough ubiquinone,” Hekimi says. “We’ll be using the results of this study to devise ways, and possibly new drugs, to boost ubiquinone levels or help residual ubiquinone to function effectively in defective mitochondria.” To that end, his research team recently received a grant from MitoCanada, a charity that seeks to help patients with mitochondrial diseases.

Story Source:

The above story is based on materials provided by McGill University.

Share12Tweet8Share2ShareShareShare2

Related Posts

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.