• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Poor grades tied to class times that don’t match our biological clocks

Bioengineer by Bioengineer
March 29, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Benjamin Smarr

It may be time to tailor students' class schedules to their natural biological rhythms, according to a new study from UC Berkeley and Northeastern Illinois University.

Researchers tracked the personal daily online activity profiles of nearly 15,000 college students as they logged into campus servers.

After sorting the students into "night owls," "daytime finches" and "morning larks" — based on their activities on days they were not in class — researchers compared their class times to their academic outcomes.

Their findings, published today in the journal Scientific Reports, show that students whose circadian rhythms were out of sync with their class schedules – say, night owls taking early morning courses – received lower grades due to "social jet lag," a condition in which peak alertness times are at odds with work, school or other demands.

"We found that the majority of students were being jet-lagged by their class times, which correlated very strongly with decreased academic performance," said study co-lead author Benjamin Smarr, a postdoctoral fellow who studies circadian rhythm disruptions in the lab of UC Berkeley psychology professor Lance Kriegsfeld.

In addition to learning deficits, social jet lag has been tied to obesity and excessive alcohol and tobacco use.

On a positive note: "Our research indicates that if a student can structure a consistent schedule in which class days resemble non-class days, they are more likely to achieve academic success," said study co-lead author Aaron Schirmer, an associate professor of biology at Northeastern Illinois University.

While students of all categories suffered from class-induced jet lag, the study found that night owls were especially vulnerable, many appearing so chronically jet-lagged that they were unable to perform optimally at any time of day. But it's not as simple as students just staying up too late, Smarr said

"Because owls are later and classes tend to be earlier, this mismatch hits owls the hardest, but we see larks and finches taking later classes and also suffering from the mismatch," said Smarr. "Different people really do have biologically diverse timing, so there isn't a one-time-fits-all solution for education."

In what is thought to be the largest-ever survey of social jet lag using real-world data, Smarr and Schirmer analyzed the online activity of 14,894 Northeastern Illinois University students as they logged in and out of the campus's learning management system over two years.

To separate the owls from the larks from the finches, and gain a more accurate alertness profile, the researchers tracked students' activity levels on days that they did not attend a class.

Next, they looked at how larks, finches and owls had scheduled their classes during four semesters from 2014 to 2016 and found that about 40 percent were mostly biologically in sync with their class times. As a result, they performed better in class and enjoyed higher GPAs.

However, 50 percent of the students were taking classes before they were fully alert, and another 10 percent had already peaked by the time their classes started.

Previous studies have found that older people tend to be active earlier while young adults shift to a later sleep-wake cycle during puberty. Overall, men stay up later than women, and circadian rhythms shift with the seasons based on natural light.

Finding these patterns reflected in students' login data spurred researchers to investigate whether digital records might also reflect the biological rhythms underlying people's behavior.

The results suggest that "rather than admonish late students to go to bed earlier, in conflict with their biological rhythms, we should work to individualize education so that learning and classes are structured to take advantage of knowing what time of day a given student will be most capable of learning," Smarr said.

###

Media Contact

Yasmin Anwar
[email protected]
510-643-7944
@UCBerkeleyNews

Home

Original Source

http://news.berkeley.edu/2018/03/29/social-jetlag/

Share12Tweet7Share2ShareShareShare1

Related Posts

Ferroptosis: A Key Player in Sepsis Progression

November 18, 2025

Exploring ICU Nurses’ Innovation Drivers via Random Forest

November 18, 2025

Glucagon-Like Peptide-1 Agonist Withdrawal Impacts Revealed

November 18, 2025

Hydralazine: Promising Epigenetic Treatment for Psoriasis?

November 18, 2025
Please login to join discussion

POPULAR NEWS

  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    211 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    201 shares
    Share 80 Tweet 50
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    118 shares
    Share 47 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    89 shares
    Share 36 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Ferroptosis: A Key Player in Sepsis Progression

Exploring ICU Nurses’ Innovation Drivers via Random Forest

Glucagon-Like Peptide-1 Agonist Withdrawal Impacts Revealed

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.