• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Pollution ‘devastating’ China’s vital ecosystem, research shows

Bioengineer by Bioengineer
June 1, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The startling extent to which man-made pollution is devastating China's vital ecosystem's ability to offset damaging carbon emissions has been revealed.

A pioneering new international study, led by the University of Exeter, has looked at the true impact air pollutants have in impeding the local vegetation's ability to absorb and store carbon from the atmosphere.

The study looked at the combined effects that surface ozone and aerosol particles – two of the primary atmospheric pollutants linked to public health and climate change – have on China's plant communities' ability to act as a carbon sink.

It found that ozone vegetation damage – which weakens leaf photosynthesis by oxidizing plant cells – far outweighs any positive impact aerosol particles may have in promoting carbon uptake by scattering sunlight and cooling temperatures.

While the damage caused to these vital ecosystems in China is not irreversible, the team of experts has warned that only drastic action will offer protection against long-term global warming.

The study is published in the journal Atmospheric Chemistry and Physics.

Professor Nadine Unger, from the University of Exeter's Mathematics department and co-author of the paper said: "We know that China suffers from the highest levels of air pollution in the world, and the adverse effects this has on human health and climate change are well documented.

"What is less clearly understood, however, is the impact it has on the regional carbon balance. The land ecosystems in China are thought to provide a natural carbon sink, but we didn't know whether air pollution inhibited or promoted carbon uptake.

"What is clear from this study is that the negative ozone vegetation damage far outstrips any benefits that an increase in aerosol particles may have. It is a stark warning that action needs to be taken now to tackle the effects man-made pollution is having on this part of the world before it is too late."

The team used state-of-the-art Earth System computer models, together with a vast array of existing measurement datasets, to assess the separate and combined effects of man-made ozone and aerosol pollution in Eastern China.

The study found that the Net Primary Productivity (NPP) – or the amount of carbon plants in an ecosystem can take in – is significantly reduced when the amount of surface ozone increases.

Crucially, this reduction is significantly greater than the effect aerosol particles have in encouraging plants to increase carbon intake through reducing canopy temperatures and increasing the scattering of light.

Professor Unger added: "Essentially, our results reveal a strong 'dampening effect' of air pollution on the land carbon uptake in China today.

"This is significant for a number of reasons, not least because the increase in surface ozone produced by man-made pollution in the region will continue to grow over the next 15 years unless something is done.

"If – and it is of course a big 'if' – China reduce their pollution to the maximum levels, we could reduce the amount of damage to the ecosystems by up to 70 per cent – offering protection of this critical ecosystem service and the mitigation of long-term global warming."

###

Media Contact

Duncan Sandes
[email protected]
01-392-722-391
@uniofexeter

http://www.exeter.ac.uk

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Scripps Research Team Discovers Sugar Molecules Key to Initiating Placental Formation

Scripps Research Team Discovers Sugar Molecules Key to Initiating Placental Formation

November 5, 2025
Identifying Heat-Tolerant White Fulani Cows Using TOPSIS

Identifying Heat-Tolerant White Fulani Cows Using TOPSIS

November 5, 2025

Sex-Based Cognitive Responses to PM2.5 Risk

November 5, 2025

Scientists Finalize Initial Drafts of Developing Mammalian Brain Cell Atlases

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1299 shares
    Share 519 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Certain p53 Mutations May Aid in Cancer Combat, Study Finds

Advances in ML for Intrusion Detection Systems

FORTRESS PLUS: Novel Rehab for Older Adults’ Frailty

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.