• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Pollinating opossums confirm decades-long theory

Bioengineer by Bioengineer
February 12, 2020
in Biology
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New footage of nocturnal pollination of plants by opossums brings light to unpublished research nearly thirty years old

IMAGE

Credit: Photo courtesy of Felipe Amorim.

In Brazil there is a plant so strange that researchers predicted – and 27 years later, proved – that opossums are key to its pollination. The findings are published in the Ecological Society of America’s journal Ecology.

The plant Scybalium fungiforme, a little-known fungus-like species of the family Balanophoraceae, has bunches of tiny pale flowers that are surrounded and housed by a hard surface of bracts – like on an artichoke. Because of their scale-like shape, the bracts must be opened or peeled back to expose the flowers and nectar to pollinators such as bees.

While most species in the Balanophoraceae plant family are primarily pollinated by bees and wasps, researchers at São Paulo State University in Botucatu, Brazil hypothesized something different. They thought that opossums, with their opposable thumbs, would be a key pollinator for S. fungiforme due to the challenging bracts covering the flowers.

In the early 1990s Patrícia Morellato, a professor at the university, first made the prediction. She and her colleagues studied the plant and they captured an opossum with nectar on its nose. There observations went unpublished because they did not record or obtain direct evidence of the opossums pollinating the flowers.

Felipe Amorim, assistant professor at the university and lead author on this study, did not encounter the plant until 2017, but hypothesized that a non-flying mammal is needed for pollination based on the flower morphology. In April 2019 his students independently hypothesized that perhaps rodents could act as the main pollinators of this species. “At that time, neither of us knew anything about the unpublished observations made by Patrícia in the ’90s,'” he explains.

In May 2019 Amorim and a team of researchers went to Serra do Japi Biological Reserve, located about 50 km from the area studied by Morellato, and set up night-vision cameras to record the activity of nocturnal flower visitors. The cameras captured opossums removing bracts from the fungus-like plant and pushing their faces into the flowers to eat the nectar. It was the first direct evidence of opossums pollinating the plant.

Amorim sent his colleague Morellato the footage. “When she watched the videos,” he says, “she sent me a voice message as excited as we were when we first saw the opossum visiting the flowers, because it was the first time she saw something she predicted two and a half-decades ago!”

The researchers had made the opossum prediction based on “pollination syndrome” – the concept that floral attributes such as color, morphology, scent, and size reflect the adaptation of a plant species to pollination by a certain group of animals. Opossums, having “hands” with opposable thumbs, are capable of peeling back the scale-like leafs covering the flowers of S. fungiforme. The plant does have other floral visitors that act as secondary pollinators once the bracts are removed – bees and wasps dominate the crowd, but a surprising additional visitor was several hummingbirds.

“Based on the flower morphology,” Amorim says, “Morellato, my students, and I could safely predict that this plant should be pollinated by non-flying mammals, but the occurrence of hummingbirds coming to the ground to visit these flowers was something completely unexpected to me.” Morellato had not seen any hummingbirds visiting this species at her study site during the ’90s, but researchers have more recently obtained indirect evidence that hummingbirds visit the plant in both study locations.

The authors hope to continue studying the pollinators of S. fungiforme to assess the efficiency of each group of flower visitor (mammals, hummingbirds, and bees and wasps) in order to quantify their contribution to the fruit production of this plant. They also want to analyze the chemical compounds of nectar and floral scent, which can reveal much about the adaptation of a plant for a given group of pollinator.

Overall, the story is an interesting one to tell, the culmination of nearly three decades of prediction and observation based on the hard shell surrounding a bunch of tiny flowers. Amorim contemplates that “at the time that non-flying mammals were first predicted as the pollinators of this fungus-like plant, I was about 11 years old, and most of the authors of this study haven’t even had born!”

###


Journal article

Amorim, F.W., et al. 2020. “Good heavens what animal can pollinate it? A fungus?like holoparasitic plant potentially pollinated by opossums.” Ecology. DOI: 10.1002/ecy.3001.

Authors

Felipe W. Amorim, Caio S. Ballarin, and Leandro Hachuy-Filho, Gabriel Mariano, Denis Augusto Zabin, Hugo Gonçalves Dias Queiroz, João Henrique Servilha, Pedro Augusto Lacerda-Barbosa,  Jennyfer G. Costa; Institute of Biosciences, São Paulo State University, Botucatu, SP, Brazil.

Ana Paula Moraes; Center for Humanities and Natural Sciences, Federal University of ABC, Campus São Bernardo do Campo, SP, Brazil.

Leonor Patrícia C. Morellato; Institute of Biosciences, São Paulo State University, Rio Claro, SP, Brazil.

Author contact:

Felipe Amorim         [email protected]

The Ecological Society of America, founded in 1915, is the world‘s largest community of professional ecologists and a trusted source of ecological knowledge, committed to advancing the understanding of life on Earth. The 9,000 member Society publishes five journals and a membership bulletin and broadly shares ecological information through policy, media outreach, and education initiatives. The Society‘s Annual Meeting attracts 4,000 attendees and features the most recent advances in ecological science. Visit the ESA website at http://www.esa.org. 

Media Contact
Zoe Gentes
[email protected]
202-833-8773

Related Journal Article

http://dx.doi.org/10.1002/ecy.3001

Tags: BiodiversityBiologyEcology/Environment
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Impact of Sex Differences on Health: A Review

October 13, 2025
Social Factors Impact Systemic Hormone Therapy Use in Midlife Women

Social Factors Impact Systemic Hormone Therapy Use in Midlife Women

October 12, 2025

Immunomodulatory Effects of Lacticaseibacillus casei Exopolysaccharides

October 12, 2025

Brainstem Connectivity Differences by Sex and Menopause

October 12, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1228 shares
    Share 490 Tweet 307
  • New Study Reveals the Science Behind Exercise and Weight Loss

    103 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    90 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Wafer-Scale Fabrication of 2D Microwave Transmitters

Evaluating Pharmacist Prescribing for Skin Condition Management

Advancements in Interfaces for High-Frequency Brain Signal Reading

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.