• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Plants that soak up sun more quickly could improve crop yields

Bioengineer by Bioengineer
November 17, 2016
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers have identified a way to manipulate photosynthesis in plants to increase both their light-harvesting ability and biomass production. As the world population faces an immense increase in the demand for food over the next decades, this advancement, which takes advantage of deficiencies in photosynthesis, could lead to better crop yields. Due to wind-tossed canopies and moving clouds, plants must adapt to rapidly varying levels of light and shade. Under an unfiltered noon sun for example, plants protect themselves from excess sunlight by dissipating some of that light energy as heat. But while this protection mechanism jumps speedily into action during sun exposure, it is slower to "relax" back to a natural state, resulting in suboptimal photosynthetic efficiency when a passing cloud shades the plant. Here, Johannes Kromdijk and colleagues suspected that manipulating the relaxation mechanism could result in better plant productivity. In tobacco plants, they induced the expression of three genes related to two energy dissipation mechanisms suspected to play a role, Photosystem II subunit S (PsbS) and the xanthophyll cycle. Under steady light conditions, the modified plants performed similarly to controls; however, under fluctuating light conditions, the modified plants were 11 and 14% better, respectively, at carbon dioxide fixation and photosynthesis. As well, the modified plants exhibited greater leaf area and plant height, with an overall dry weight that was 14 to 20% greater than that of control plants. Similar results were found when the modified plants were grown under greenhouse and field conditions, the authors report. Importantly, they note that both PsbS and the xanthophyll cycle are common to all vascular plants, meaning that this type of efficiency-boosting manipulation could theoretically be applied to all major crops.

###

Media Contact

Science Press Package
[email protected]
202-326-6440
@AAAS

http://www.aaas.org

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Regenerative Agriculture: Defining a Sustainable Farming Philosophy

Regenerative Agriculture: Defining a Sustainable Farming Philosophy

November 14, 2025

Peer-Supported Mobile Orientation Eases Nursing Students’ Stress

November 14, 2025

Understanding Huntington’s Disease: Expansion, Pathology, and Treatments

November 14, 2025

Impact of Nanosecond Electric Pulses on Mitochondria

November 14, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    318 shares
    Share 127 Tweet 80
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    210 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    200 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    141 shares
    Share 56 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Regenerative Agriculture: Defining a Sustainable Farming Philosophy

Peer-Supported Mobile Orientation Eases Nursing Students’ Stress

Understanding Huntington’s Disease: Expansion, Pathology, and Treatments

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.