• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Plants that soak up sun more quickly could improve crop yields

Bioengineer by Bioengineer
November 17, 2016
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers have identified a way to manipulate photosynthesis in plants to increase both their light-harvesting ability and biomass production. As the world population faces an immense increase in the demand for food over the next decades, this advancement, which takes advantage of deficiencies in photosynthesis, could lead to better crop yields. Due to wind-tossed canopies and moving clouds, plants must adapt to rapidly varying levels of light and shade. Under an unfiltered noon sun for example, plants protect themselves from excess sunlight by dissipating some of that light energy as heat. But while this protection mechanism jumps speedily into action during sun exposure, it is slower to "relax" back to a natural state, resulting in suboptimal photosynthetic efficiency when a passing cloud shades the plant. Here, Johannes Kromdijk and colleagues suspected that manipulating the relaxation mechanism could result in better plant productivity. In tobacco plants, they induced the expression of three genes related to two energy dissipation mechanisms suspected to play a role, Photosystem II subunit S (PsbS) and the xanthophyll cycle. Under steady light conditions, the modified plants performed similarly to controls; however, under fluctuating light conditions, the modified plants were 11 and 14% better, respectively, at carbon dioxide fixation and photosynthesis. As well, the modified plants exhibited greater leaf area and plant height, with an overall dry weight that was 14 to 20% greater than that of control plants. Similar results were found when the modified plants were grown under greenhouse and field conditions, the authors report. Importantly, they note that both PsbS and the xanthophyll cycle are common to all vascular plants, meaning that this type of efficiency-boosting manipulation could theoretically be applied to all major crops.

###

Media Contact

Science Press Package
[email protected]
202-326-6440
@AAAS

http://www.aaas.org

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Exploring Alcohol Use and Anxiety Links via Analysis

October 13, 2025

Radioligand Therapy’s Impact on Neuroendocrine Tumors

October 13, 2025

Chip-Scale Second-Harmonic Source via Optical Poling

October 13, 2025

Single-cell Study Links CXCL16/CXCR6 to Psoriasis

October 13, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1231 shares
    Share 492 Tweet 307
  • New Study Reveals the Science Behind Exercise and Weight Loss

    104 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    91 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Alcohol Use and Anxiety Links via Analysis

Radioligand Therapy’s Impact on Neuroendocrine Tumors

Chip-Scale Second-Harmonic Source via Optical Poling

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.