• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, December 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Plants respond to disease and damage

Bioengineer by Bioengineer
January 18, 2015
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

When plants come under attack internal alarm bells ring and their defence mechanisms swing into action – and it happens in the space of just a few minutes. Now, for the first time, plant scientists – including experts from The University of Nottingham – have imaged, in real time, what happens when plants beat off the bugs and respond to disease and damage.

leaves

The research, “A fluorescent hormone biosensor reveals the dynamics of jasmonate signalling in plants”, was carried out by an interdisciplinary team from the UK, France and Switzerland and has been published in the leading academic journal Nature Communications.

Malcolm Bennett, Professor in Plant Science at The University of Nottingham and Director of the Centre for Plant Integrative Biology, said: “Understanding how plants respond to mechanical damage, such as insect attack, is important for developing crops which cope better under stress.”

Their research focussed on the plant hormone jasmonic acid which is part of the plant’s alarm system and defence mechanism. Jasmonic acid is released during insect attack and controls the response to damage. Disease can also trigger jasmonic acid – so it’s a general defence compound.

Professor Bennett said: “We have created a special fluorescent protein – Jas9-VENUS – that is rapidly degraded after jasmonic acid is produced. This allowed us to monitor where jasmonic levels are increased when the fluorescent signal is lost.”

Defences can be prepared in minutes

Using a blade to damage a leaf the research team mimicked an insect feeding. With the fluorescent protein they were able to image how damage to a leaf quickly results in a pulse of jasmonic acid that reaches all the way down to the tip of the root, at a speed of more than a centimetre per minute. Once this hormone pulse reaches the root it triggers more jasmonic acid to be produced locally, amplifying the wounding signal and ensuring other parts of the plant are prepared for attack.

Professor Bennett said: “Jasmonic acid triggers the production of defence compounds like protease inhibitors to stop the insect being able to digest the plant proteins – the plant becomes indigestible and the insect stops eating it.”

Laurent Laplaze, a group leader at IRD (Institut de recherche pour le développement) in Montpellier, described the new biosensor used to pinpoint what happens when plants are damaged. He said: “The Jas9-VENUS biosensor responds to changes in jasmonic acid levels in plant cells within a few minutes. Our new biosensor now allows us to see exactly where jasmonic acid is being perceived by the plant, but in a quantifiable way.”

More to learn about how plants coordinate their defences

The new biosensor can be used to understand how the plant can coordinate a defence response. Teva Vernoux, a CNRS group leader at the Ecole Normale Supérieure in Lyon, said: “The amazing sensitivity of our new biosensor allows us to follow in real time how jasmonic acid levels are modified in a tissue when a mechanical damage occurs in another tissue some distance away. This really opens the possibility to understand changes in the physiology at the whole plant level upon stress or damage.”

This research was partly funded by the Biotechnology and Biological Sciences Research Council (BBSRC), the Agence Nationale de la Recherche (ANR), the Agropolis Fondation, and the Région Languedoc-Roussillon.

Story Source:

The above story is based on materials provided by University of Nottingham, Lindsay Brooke.

Share12Tweet8Share2ShareShareShare2

Related Posts

Maternal Estradiol Excess Alters Fetal Mouse Brain Development

Maternal Estradiol Excess Alters Fetal Mouse Brain Development

December 2, 2025
Elevational Interactions of Plants and Lichens in Grasslands

Elevational Interactions of Plants and Lichens in Grasslands

December 2, 2025

Exploring Rare JAK/STAT Variants in Tyrolean Community

December 2, 2025

Do Toe Fringes Aid Lizards in Sandy Burrowing?

December 2, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    204 shares
    Share 82 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    120 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    106 shares
    Share 42 Tweet 27
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    68 shares
    Share 27 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Hypoxia Boosts USP13 to Aid Liver Cancer Survival

Exploring Subgingival Microbiota in Severe Periodontitis

Chinese Parents’ Burnout in Raising Disabled Children

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.