• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, July 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Plants can smell, now researchers know how

Bioengineer by Bioengineer
January 23, 2019
in Biology
Reading Time: 4 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

First steps to understanding biochemistry of how plants detect odors

Plants don’t need noses to smell. The ability is in their genes. Researchers at the University of Tokyo have discovered the first steps of how information from odor molecules changes gene expression in plants. Manipulating plants’ odor detection systems may lead to new ways of influencing plant behavior.

The discovery is the first to reveal the molecular basis of odor detection in plants and was more than 18 years in the making.

“We started this project in 2000. Part of the difficulty was designing the new tools to do odor-related research in plants,” said Professor Kazushige Touhara of the University of Tokyo.

Plants detect a class of odor molecules known as volatile organic compounds, which are essential for many plant survival strategies, including attracting birds and bees, deterring pests, and reacting to disease in nearby plants. These compounds also give essential oils their distinctive scents.

Touhara’s team exposed tobacco cells and 4-week-old tobacco plants to different volatile organic compounds. They discovered that odor molecules change gene expression by binding to other molecules called transcriptional co-repressors that can turn genes on or off.

In plants, the odor molecules must move into the cell and accumulate before they affect plant behavior. In animals, odor molecules are recognized by receptors on the outside of cells in the nose and immediately trigger a signaling pathway to recognize the odor and change behavior.

“Plants can’t run away, so of course they react to odors more slowly than animals. If plants can prepare for environmental change within the same day, that is probably fast enough for them,” said Touhara.

Speed is unnecessary for plants, but they may be able to recognize a much greater variety of odor molecules.

“Humans have about 400 odor receptors. Elephants have about 2,000, the largest number in animals. But based on how many transcription factor genes are in plants, plants may be able to detect many more odors than animals,” said Touhara.

Touhara imagines applying these discoveries to influence crop quality or character without the complications of gene editing or pesticide use. Farmers could spray their fields with an odor associated with a desired plant behavior. For example, an odor that triggers plants to change the taste of their leaves to deter insects.

“All creatures communicate with odor. So far, our lab has studied within-species communication: insect to insect, mouse to mouse, human to human. This understanding of how plants communicate using odor will open up opportunities to study ‘olfactory’ communication between all creatures,” said Touhara.

The University of Tokyo research team made their discoveries using tobacco plants, a common model organism. They expect research teams around the world will soon verify the discovery in many other types of plants.

###

The research is published by The Journal of Biological Chemistry on February 15, 2019, available online on December 28, 2018.

Journal Article

Nagashima A, Higaki T, Koeduka T, Ishigami K, Hosokawa S, Watanabe H, Matsui K, Hasezawa S, Touhara K. Transcription regulators involved in responses to volatile organic compounds in plants. Journal of Biological Chemistry. 15 Feb 2019. DOI: 10.1074/jbc.RA118.005843

Related Links

Graduate School of Agricultural and Life Sciences, The University of Tokyo website: https://www.a.u-tokyo.ac.jp/english/

Kazushige Touhara website: http://park.itc.u-tokyo.ac.jp/biological-chemistry/profile_english/index.html

Research Contact

Professor Kazushige Touhara

Laboratory of Biological Chemistry, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, JAPAN

Tel: +81-(0)3-5841-5109

E-mail: [email protected]

Press Contact

Ms. Caitlin Devor

Division for Strategic Public Relations, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, JAPAN

Tel: +81-(0)3-5841-0876

Email: [email protected]

About the University of Tokyo

The University of Tokyo is Japan’s leading university and one of the world’s top research universities. The vast research output of some 6,000 researchers is published in the world’s top journals across the arts and sciences. Our vibrant student body of around 15,000 undergraduate and 15,000 graduate students includes over 2,000 international students. Find out more at http://www.u-tokyo.ac.jp/en/ or follow us on Twitter at @UTokyo_News_en.

Media Contact
Kazushige Touhara
[email protected]
81-035-841-5109

Related Journal Article

https://www.u-tokyo.ac.jp/focus/en/press/z0508_00026.html
http://dx.doi.org/10.1074/jbc.RA118.005843

Tags: AgricultureBiochemistryBiologyChemistry/Physics/Materials SciencesPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Ingestible Capsules Enable Microbe-Based Therapeutic Control

Ingestible Capsules Enable Microbe-Based Therapeutic Control

July 28, 2025
Engineering Receptors to Enhance Flagellin Detection

Engineering Receptors to Enhance Flagellin Detection

July 28, 2025

Decoding FLS2 Unveils Broad Pathogen Detection Principles

July 28, 2025

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

July 26, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    54 shares
    Share 22 Tweet 14
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Novel Plasma Synuclein Test Advances Parkinson’s Diagnosis

Advancing Microbial Risk Assessment Through Detection Technology Evolution

Obesity’s Impact on Pancreatic Surgery Outcomes Compared

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.