• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Plant ‘smells’ insect foe, initiates defense

Bioengineer by Bioengineer
August 24, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Nick Sloff, Penn State

It cannot run away from the fly that does it so much damage, but tall goldenrod can protect itself by first "smelling" its attacker and then initiating its defenses, according to an international team of researchers. "We found another weapon in the arsenal of defenses that plants might employ against their herbivore attackers, in this case eavesdropping on a very specific chemical signal from an herbivore to detect its presence and prepare for future attack," said Anjel Helms, postdoctoral fellow in entomology, Penn State. According to Helms, the gall-inducing flies (Eurosta solidaginis) are specialists that, in Pennsylvania, feed only on tall goldenrod (Solidago altissima). The male flies emit a blend of chemicals that is attractive to females. Once the females arrive and the eggs are fertilized, the females deposit their eggs within the stem of a goldenrod plant. After the eggs hatch, the larvae begin feeding on the tissue inside the stem. Chemicals in the saliva of the larvae are thought to cause the plant to grow abnormally and form a gall, or protective casing of plant tissue, around the larvae. "The flies strongly reduce the plant's fitness by decreasing the number of seeds it produces, as well as the sizes of those seeds," said John Tooker, associate professor of entomology, Penn State. "That's because when the plant's tissues are damaged by the insect, it diverts its energy away from seed production and instead toward production of the gall." Helms and her colleagues previously found that goldenrod plants exposed to chemicals from the male flies produced greater amounts of a defense chemical known as jasmonic acid when they were damaged by herbivores. In their current study, the scientists aimed to identify the specific chemical compounds goldenrod plants are detecting and to determine how sensitive the plants are to the compounds. The researchers, including those at the U.S. Department of Agriculture, the University of Hamburg, Germany, and ETH Zurich, first identified the chemical compounds that make up the male fly's chemical emission. After identifying and quantifying the compounds in the male fly emission, the researchers exposed goldenrod plants to the individual compounds and examined their defense responses. They found that the plants responded most strongly to a compound in the blend called E,S-conophthorin. "E,S-conophthorin is the most abundant compound emitted by the flies," said Helms. "The compound appears to provide a strong and reliable cue for the plants to detect." Next, the team examined goldenrod's sensitivity to E,S-conophthorin by exposing plants to different concentrations of the compound and measuring their defense responses. "We found that goldenrod plants are sensitive to even small concentrations of this compound," said Tooker. "This is significant because it likely means that the plant has a dedicated mechanism to perceive this compound. The results provide evidence that goldenrod can detect a single compound from the fly, supporting the idea that there is a tight co-evolutionary relationship between these two species. In other words, over time, as the fly has adapted to take advantage of the plant, the plant has adapted to protect itself from the fly." The findings appear in today's (Aug. 24) issue of Nature Communications. According to Tooker, the team's previous work was the first to demonstrate a plant "smelling" its herbivore, and its current work is the first to document exactly what compound the plants are detecting. "How plants perceive volatile chemicals is poorly understood," said Tooker, "so having a somewhat unique or distinct molecule to explore that mechanism is promising, and a direction we will explore in the future." Other authors on the paper include Consuelo De Moraes and Mark C. Mescher of ETH Zurich, Armin Tröger and Wittko Francke of the University of Hamburg, and Hans Alborn of the USDA-Agricultural Research Service. The U.S. National Science Foundation, Swiss National Science Foundation, David and Lucile Packard Foundation and ETH Zurich supported this research.

###

Media Contact

A'ndrea Elyse Messer
[email protected]
814-865-9481
@penn_state

http://live.psu.edu

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

New Study Uncovers Variation in Viral Risk Among Bat Species

November 3, 2025
16th International Congress on Skin Ageing & Challenges 2025: Pioneering Innovation, Strategic Approaches, and Translational Advances

16th International Congress on Skin Ageing & Challenges 2025: Pioneering Innovation, Strategic Approaches, and Translational Advances

November 3, 2025

Wireless Neural Implant Smaller Than a Grain of Salt Monitors Brain Activity

November 3, 2025

Big Brains Demand Warm Bodies and Larger Offspring, New Study Finds

November 3, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1297 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    204 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Predicting Concentration and Mass Transfer in Pharma Drying

Widespread LA-Area Wildfires Trigger Changes in Firefighters’ Blood Proteins, Prompting Health Concerns

Researchers Uncover Novel Method to Direct Stem Cell Fate

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.