• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Pig gene advance could boost sperm stocks from prized animals

Bioengineer by Bioengineer
January 14, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Gene-editing techniques could help to improve stocks of farmed pigs by boosting supplies of sperm from prized sires.

Scientists have created male pigs that could be used as surrogates capable of producing sperm that contains the genetic blueprint of sought-after pigs.

The surrogates have functional testes but do not have specialised stem cells that are required to produce sperm containing their own genetic information, the researchers say.

Stem cells from male pigs with desirable characteristics – such as greater resilience to disease – could be transplanted into the surrogates to produce limitless supplies of their valuable sperm.

Previous efforts to preserve sperm stem cells from prized pigs by transplanting them into surrogate pigs have so far had limited success.

Existing methods involve using chemotherapy drugs or irradiation to remove sperm stem cells from the recipients before transplanting donor cells. These approaches can also damage other tissues in the testes that are needed for sperm production, however.

Researchers used a sophisticated genetic tool called CRISPR/Cas9 to alter individual letters of the pig's genetic code leading to inactivation of a gene called NANOS2.

The scientists found that pigs with two copies of the DNA change do not have sperm stem cells and cannot produce sperm, making them completely sterile.

All other aspects of testicular development were completely unaffected and the animals are otherwise healthy. Female pigs were also unaffected by the change to their genetic code.

Pigs with only one copy of the DNA change are still fertile and could be used to produce more of the surrogate animals using conventional breeding techniques, researchers say.

The team says the breakthrough will allow farmers to preserve sperm from prized animals in perpetuity.

Researchers from the University of Edinburgh's Roslin Institute, Washington State University, the University of Maryland and the US Department of Agriculture's Animal Bioscience and Biotechnology Laboratory worked together on the project.

The study is published in the journal Scientific Reports.

Professor Bruce Whitelaw, Head of Developmental Biology at the University of Edinburgh's Roslin Institute, said: "This could dramatically improve the production efficiency and quality of farmed pigs, as well as enhancing other desirable traits such as disease resilience in production animals."

###

The Roslin Institute receives strategic funding from the Biotechnology and Biological Sciences Research Council.

Media Contact

Jen Middleton
[email protected]
44-131-650-6514
@edinunimedia

http://www.ed.ac.uk

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Innovative Tool Automates Cell Identification in Complex Datasets

September 11, 2025

Discovering a Female-Specific Mechanism Regulating Energy Expenditure in Brown Fat

September 11, 2025

Dr. Michael Welsh Honored with Lasker Award for Groundbreaking Cystic Fibrosis Research

September 11, 2025

Mass General Brigham’s Kraft Center Reveals Winner and Finalists for 2025 Kraft Prize in Community Health Innovation

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    63 shares
    Share 25 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Innovative Tool Automates Cell Identification in Complex Datasets

Discovering a Female-Specific Mechanism Regulating Energy Expenditure in Brown Fat

Dr. Michael Welsh Honored with Lasker Award for Groundbreaking Cystic Fibrosis Research

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.