• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Physiological stressors triggering disease in the heart

Bioengineer by Bioengineer
September 22, 2021
in Biology
Reading Time: 3 mins read
0
MMRI
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

UTICA, NY — It’s not uncommon for people to live normal, healthy lives without knowledge of any underlying genetic conditions. However, all it takes is one external impact, such as a heart attack, to induce the expression of the condition. This is exactly the situation that occurred in an individual who was severely electrocuted in a work accident. Indeed, following the accident the patient began exhibiting signs of multiple cardiac arrythmias, or irregularities in the normal beating of the heart. In a study recently published at the Masonic Medical Research Institute (MMRI), Dr. Jonathan Cordeiro found that the individual actually had two overlapping cardiac conditions. “We had previously seen similar situations in individuals who had suffered heart attacks, where a sudden stressor event increases susceptibility to heart diseases later in life. In this situation, electrocution was the physiological stressor that resulted in long-term cardiac alterations,” said. Dr. Cordeiro.

MMRI

Credit: Property of the Masonic Medical Research Institue

UTICA, NY — It’s not uncommon for people to live normal, healthy lives without knowledge of any underlying genetic conditions. However, all it takes is one external impact, such as a heart attack, to induce the expression of the condition. This is exactly the situation that occurred in an individual who was severely electrocuted in a work accident. Indeed, following the accident the patient began exhibiting signs of multiple cardiac arrythmias, or irregularities in the normal beating of the heart. In a study recently published at the Masonic Medical Research Institute (MMRI), Dr. Jonathan Cordeiro found that the individual actually had two overlapping cardiac conditions. “We had previously seen similar situations in individuals who had suffered heart attacks, where a sudden stressor event increases susceptibility to heart diseases later in life. In this situation, electrocution was the physiological stressor that resulted in long-term cardiac alterations,” said. Dr. Cordeiro.

In his research, Dr. Cordeiro and his team used fibroblasts (skin cells) from the electrocuted patient to generate human induced pluripotent stem cells (hiPSC). This type of cell can be directed to any cell type of interest, such as cardiomyocytes (heart cells) to study disease under tissue culture conditions. “The nice thing about stem cells is they are patient specific. Not everyone responds the same way to a drug, but with access to a patient’s cells, we can determine how those cardiomyocytes respond to drug treatment and develop a more personalized and patient-specific approach to therapeutic strategies. Through our research, physicians can make more informed decisions for a specific patient’s treatment regiment,” said Ryan Pfeiffer, co-author and Research Associate at MMRI.

The use of hiPSC, together with a combination of a myriad of other techniques, such as calcium imaging, electrophysiology, and field potential analysis, the mechanisms by which genetic mutations cause cardiac arrhythmias can be systematically determined. In this case, the electrocuted individual was shown to carry several genetic mutations linked to Early Repolarization Syndrome and Short QT Syndrome, two very severe cardiac arrhythmia conditions that can lead to sudden cardiac death. Importantly, knowing that the individual carries these mutations can help clinicians better and more effectively treat the conditions, to allow for a longer and healthier life. “This study is an excellent example of investigators from different areas of expertise working together to resolve a common problem. It was enjoyable to work with the other co-authors,” said Jacqueline Treat, a Research Associate and co-author on the manuscript.

“These overlap phenomena are likely to be of some significance.  Indeed, many scientists want to divide syndromes neatly into one category or another but as your paper illustrates there may well be a continuum in which overlap phenomena occur,” said Dr. Jules C Hancox, Professor of Cardiac Electrophysiology at University of Bristol.

The manuscript titled, “Overlap Arrhythmia Syndromes Resulting from Multiple Genetic Variations Studied in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes,” was published in the International Journal of Molecular Science (IJMS) special issue, “The Magnificent World of Induced Pluripotent Stem Cell-Derived Cardiomyocytes,” on July 1, 2021. A link to the publication can be found at the following website: doi.org/10.3390/ijms22137108

###

MMRI is dedicated to scientific research that improves the health and quality of life for all. We strive to conduct high quality research aimed at developing a deep understanding of diseases and generating innovative cures and treatments. For more information about MMRI, please visit mmri.edu or find us on social media!



Journal

International Journal of Molecular Sciences

DOI

doi.org/10.3390/ijms22137108

Article Publication Date

1-Jul-2021

Share12Tweet8Share2ShareShareShare2

Related Posts

Initiative Aims to Halt Decline of Iconic Butterfly Species

Initiative Aims to Halt Decline of Iconic Butterfly Species

October 1, 2025
Revolutionary Algorithm Enhances Disease Classification Using Omics

Revolutionary Algorithm Enhances Disease Classification Using Omics

October 1, 2025

Carnegie Mellon Wins ARPA-H Grant to Develop At-Home Technology for Early Cancer Detection

October 1, 2025

Uncovering How Pathogens Assemble Protein Machinery to Thrive in the Gut

October 1, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    65 shares
    Share 26 Tweet 16
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Monoclonal Antibodies Shield Against Drug-Resistant Klebsiella

High-Frame Ultrasound Reveals Liver Cancer Insights

Impact of Reaction Time on α-MnO₂ in Zinc-Ion Batteries

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.