• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Physicists quantum simulate a system in which fermions with multiple flavors behave like bosons

Bioengineer by Bioengineer
December 17, 2020
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: HKUST

In the text book of quantum mechanics, it was introduced that bosons and fermions, two types of elementary particles that build the universe, behave in a drastically different way. For example, bosons can share the same quantum state while fermions of the same kind cannot but fill available quantum states one by one.

Nevertheless, modern developments in condensed matter physics and high energy physics have suggested that the boundary between bosons and fermions can be blurred. One of such examples is a gas of multi-flavor fermions, each identified by a different spin (indicated by arrows in Figure), in which any two flavors interact with one another by the same interaction. Multi-flavor fermions with such a SU(N) symmetry are expected to behave like an ensemble of spinless bosons when the number of different spins in the system becomes very large. The researchers at the Hong Kong University of Science and Technology (HKUST) and the Purdue university use quantum simulation to explore such a “bosonization” phenomenon with ultracold fermions in three dimensions.

Bosonization has been explored–theoretically and experimentally–in one-dimensional systems. But it is unclear if bosonization occurs in higher dimensional systems, largely because exact solutions to the interacting many-body system are unknown. Here, the researchers show, for the first time, that it does occur in three-dimensional systems by measuring two-body contacts, the central quantity governing all thermodynamic quantities of dilute quantum gases ranging from the energy to the pressure. Evidence of bosonization in contacts thus demonstrates that all other thermodynamic quantities also approach those of bosons.

During the experiment, the researchers controls the number of fermion spins from 1 to 6, and monitor how the contact of fermions approaches that of bosons.

Gyu-Boong Jo, Associate Professor of Physics at HKUST, one of the leaders of the research team, said, “Our experimental observation confirms that multi-flavor fermions can bosonize with the increasing number of spins in three dimensions. It is remarkable to quantum simulate a special type of fermionic systems that are hard to be realized in solids and to address an open question”.

This work has demonstrated a method of monitoring contacts as a new tool for exploring quantum matter and its underlying symmetries. In particular, this paves the way for the precise investigation of SU(N)-symmetric fermions, in which nonidentical fermions interact identically, that are not easily available in real materials.

###

Qi Zhou, Associate Professor of Physics at Purdue and the other leader of the team, said, “A SU(N)-symmetric Fermi gas used in this work will bring quantum simulation to the next level, which would allow researcher to gain a better understanding of strongly correlated materials, such as exotic magnetic and superfluid phases if we add a periodic lattice.”

The research was recently published online in Physical Review X on December 16, 2020.

The research was funded by the Croucher Foundation, the Research Grants Council of Hong Kong and the U.S. National Science Foundation.

Media Contact
Lindy Wong
[email protected]

Related Journal Article

http://dx.doi.org/10.1103/PhysRevX.10.041053

Tags: Atomic/Molecular/Particle PhysicsChemistry/Physics/Materials Sciences
Share14Tweet9Share2ShareShareShare2

Related Posts

Scientists Create Novel Carbon Allotrope in Groundbreaking Study

Scientists Create Novel Carbon Allotrope in Groundbreaking Study

August 14, 2025
Scientists Redesign Enzyme to Decode Disease Through Cellular Sugar Patterns

Scientists Redesign Enzyme to Decode Disease Through Cellular Sugar Patterns

August 14, 2025

New Technique Enhances Liquid Crystals for Improved Memory Performance

August 14, 2025

Array Detection Extends Localization Range for Simple and Robust MINFLUX Imaging

August 14, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Vaccine Effectiveness in Older Adults

Rare Ovarian Tumor Masquerading as Pregnancy Successfully Treated in Uncommon Case

Worcester Polytechnic Institute Chosen as Principal Partner in National Initiative to Enhance Cybersecurity and AI Training for U.S. Automotive Innovation

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.