• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Physicists design ‘super-human’ red blood cells to deliver drugs to specific targets

Bioengineer by Bioengineer
January 16, 2020
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Georgia Kirkos, McMaster University

A team of physicists from McMaster University has developed a process to modify red blood cells so they can be used to distribute drugs throughout the body, which could specifically target infections or treat catastrophic diseases such as cancer or Alzheimer’s.

The modified red blood cells are designed to circulate in the body for several weeks at a time, seeking out specific targets including bacteria, tumours or organs.

The technology, described in the online edition of the journal Advanced Biosystems, solves a major problem with current drug delivery methods that use synthetic molecules and cannot reach specific targets or are rejected by the body.

“We call these super-human red blood cells. We think that they could work as the perfect stealth drug carriers which can outsmart our immune system,” explains Maikel Rheinstädter, a senior advisor on the study and professor in the Department of Physics & Astronomy at McMaster.

The researchers have developed a method to open up the red blood cell, modify its outer cell wall, and replace its contents with a drug molecule, which would then be injected back into the body.

The hybrid appears and behaves as a normal red blood cell, but has a sticky surface which can attach itself to bacteria, for example, open up and release antibiotics exactly where they are needed.

“We have combined synthetic material with biological material and created a new structure, which has never been done before in this way,” says Sebastian Himbert, lead author and a graduate student in the Department of Physics & Astronomy at McMaster.

“The entire process is very efficient and can be completed in one day in the lab,” he says.

Researchers believe this targeted delivery method could help to minimize dosages and therefore, potential side effects. This is particularly important for very potent drugs used in cancer and Alzheimer’s disease, and the treatment of infections of potentially resistant bacteria.

###

The work was done in collaboration with Harald Stöver, professor in the Department of Chemistry and Chemical Biology at McMaster, Janos Juhasz from the Juravinski Cancer Centre, and researchers at Saarland University in Germany.

A high res photo and video of researchers Maikel Rheinstädter and Sebastien Himbert can be found at this link: https://assets.adobe.com/public/907bc03f-19a0-4454-6dda-d1d10a57eb0a

Attention editors: A copy of the study can be found at the link below:

Adv. Biosys.2020, 1900185 “Hybrid erythrocyte liposomes: functionalized red blood cell membranes for molecule encapsulation”, Sebastian Himbert, Matthew J. Blacker, Alexander Kihm, Quinn Pauli, Adree Khondker, Kevin Yang, Sheilan Sinjari, Mitchell Johnson, Janos Juhasz, Christian Wagner, Harald D. H. Stöver and Maikel C. Rheinstädter

Adv. Biosys.2020, 1900185

https://doi.org/10.1002/adbi.201900185

Media Contact
Michelle Donovan
[email protected]
905-525-9140

Related Journal Article

http://dx.doi.org/10.1002/adbi.201900185

Tags: Atomic/Molecular/Particle PhysicsBiologyCell BiologyChemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Tardigrades Reveal Unique Dicer Gene Family Expansions

Tardigrades Reveal Unique Dicer Gene Family Expansions

October 8, 2025
blank

Linkage: Connect DNA Regulatory Peaks to Genes

October 7, 2025

Edo Cattle Market Study: High Tick Diversity Observed

October 7, 2025

Brain-on-a-Chip Technology Uncovers Mechanisms of Brain Damage in Sepsis and Neurodegenerative Diseases

October 7, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1045 shares
    Share 418 Tweet 261
  • New Study Reveals the Science Behind Exercise and Weight Loss

    99 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    95 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    78 shares
    Share 31 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Gut Microbiota Alterations Determine Susceptibility to AIG-Associated Neuroendocrine Tumors

Circular RNAs in Mammalian Follicle Development: Insights

Surgical Menopause May Prompt Early Workforce Exit in Women, But Hormone Therapy Shows Promise

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.