• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Photosynthesis discovery could help design more efficient artificial…

Bioengineer by Bioengineer
January 24, 2018
in Biology, Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Georgia State University

ATLANTA–A natural process that occurs during photosynthesis could lead to the design of more efficient artificial solar cells, according to researchers at Georgia State University.

During photosynthesis, plants and other organisms, such as algae and cyanobacteria, convert solar energy into chemical energy that can later be used as fuel for activities. In plants, light energy from the sun causes an electron to rapidly move across the cell membrane. In artificial solar cells, the electron often returns to its starting point and the captured solar energy is lost. In plants, the electron virtually never returns to its starting point, and this is why solar energy capture in plants is so efficient. A process called inverted-region electron transfer could contribute to inhibiting this "back electron transfer."

This study's findings, published in the journal Proceedings of the National Academy of Sciences, provide quantitative evidence that inverted-region electron transfer is responsible for the very high efficiency associated with solar energy conversion in photosynthesis.

Theoretical work on this phenomenon won Dr. Rudolph Marcus the 1992 Nobel Prize in Chemistry, but until now the mechanism has not been demonstrated in natural photosynthetic systems. The researchers studied photosynthetic reaction centers from the freshwater cyanobacterium species Synechocystis, which has the same photosynthetic machinery as plants.

"We were able to reveal the existence of the mechanism for the first time by inventing a method to allow us to successfully undertake the required challenging experiments," said Dr. Gary Hastings, lead author and professor in the Department of Physics and Astronomy at Georgia State. "Our findings point to new ways on how one might think about designing artificial solar cells that can be used, for example, for producing hydrogen gas, which can be used as a clean and renewable fuel."

Solar energy, the cleanest and most abundant renewable energy source available, can be converted into thermal, chemical or electrical energy. By tapping into and converting a tiny fraction of the solar energy that falls on the earth each year, humans' increasing thirst for energy may be quenched, Hastings said. The solar market industry in the United States is working to scale up the production of solar technology and drive down costs, but it faces some challenges, according to the Solar Energy Industries Association.

"Plants convert solar energy ultra-efficiently, considerably more efficiently than any artificial solar cell," Hastings said. "In photosynthesis, light comes in, an electron moves across a membrane and it doesn't come back. The big problem with artificial systems is the electron does go back much of the time. That's the real heart of why plants are so efficient at converting solar energy.

"The details that underlie efficient solar energy conversion in plants are poorly understood. This is unfortunate, as detailed knowledge in this area is important to aid in quests to design economically viable artificial solar converters. Our work has revealed one design principle that is at play in efficient solar energy conversion in plants, and the hope is that this principle could be utilized in the design of new and better types of artificial solar cells."

###

Dr. Hiroki Makita of Georgia State is a co-author of the study.

The study was funded by the Qatar National Research Fund.

To read the study, visit http://www.pnas.org/content/early/2017/08/15/1704855114.full.pdf?sid=cfab6659-86d1-4246-bd45-8437435935b7.

Media Contact

LaTina Emerson
[email protected]
404-413-1353
@GSU_News

Georgia State University

Original Source

http://news.gsu.edu/2017/08/29/photosynthesis-discovery-could-lead-to-design-of-more-efficient-artificial-solar-cells/?utm_source=press_release&utm_medium=media&utm_campaign=photosynthesis_solar

Share14Tweet8Share2ShareShareShare2

Related Posts

Comparing Nutritional Risk Tools for Older Patients’ Health

November 16, 2025

TRIML2 Drives Malignancy in Head and Neck Cancer

November 16, 2025

NTM Lung Infection Risk Linked to Trace Metals

November 16, 2025

Temperature Effects on Canned Whelk Quality

November 16, 2025
Please login to join discussion

POPULAR NEWS

  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    210 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    201 shares
    Share 80 Tweet 50
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    318 shares
    Share 127 Tweet 80
  • Neurological Impacts of COVID and MIS-C in Children

    88 shares
    Share 35 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Comparing Nutritional Risk Tools for Older Patients’ Health

TRIML2 Drives Malignancy in Head and Neck Cancer

NTM Lung Infection Risk Linked to Trace Metals

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.