• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Photocrosslinking, not Ojak bridge, facilitates transistor functionality

Bioengineer by Bioengineer
May 2, 2024
in Chemistry
Reading Time: 3 mins read
0
A schematic depiction showcasing the Photophore-Anchored Molecular Switch for High-Performance Nonvolatile Organic Memory Transistor
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In the tale of the herdsman and the weaver, “Ojak Bridge” stood as a testament to the enduring love between them, crafted by the crow and the magpie. Similarly, in the realm of chemical engineering, functional molecules forge bonds much like the avian duo once did.

A schematic depiction showcasing the Photophore-Anchored Molecular Switch for High-Performance Nonvolatile Organic Memory Transistor

Credit: POSTECH

In the tale of the herdsman and the weaver, “Ojak Bridge” stood as a testament to the enduring love between them, crafted by the crow and the magpie. Similarly, in the realm of chemical engineering, functional molecules forge bonds much like the avian duo once did.

 

A research team led by Professor Dae Sung Chung and Dr. Syed Zahid Hassan from the Department of Chemical Engineering at Pohang University of Science and Technology (POSTECH) has developed a memory transistor capable of adjusting its threshold voltage. This innovation combines two molecules that form a stable bond with a polymeric semiconductor, situated at the end of a molecular switch. The research recently featured in the online edition of “Advanced Science,” an international materials science journal.

 

These molecular switches control electrical signals by leveraging the conversion properties of diverse organic molecular isomers. When integrated into field-effect transistors (FETs), they govern electron flow at the molecular scale. While molecular switch-based FETs have been a key technology for implementing organic FETs (OFETs) in recent years, their longevity has been hampered by the limited ability of the molecules that act as switch molecules to serve as efficient deep traps for capturing and storing electrons within the semiconductor layer.

 

In this research, the team tackled this challenge by constructing a bridge illuminated by “light.” They pioneered a novel method to establish a “photonic bridge,” a light-triggered chemical linkage between a molecular switch molecule and a polymeric organic semiconductor. At the terminus of the molecular switch, consisting of diarylethene (DAE), the team combined an azide and a diazirine. Under light exposure, these two functional groups forge a chemical connection with the organic polymer semiconductor, stabilizing the typically precarious closed isomer of DAE in a deep-trapped state.

 

In experimental trials, the OFETs incorporating the team’s DAE compounds demonstrated remarkable endurance, maintaining stable deep-trap states for durations exceeding a million seconds. Furthermore, they showcased exceptional photoprogrammable on-off switching ratios surpassing 1,000 at a voltage of 22 V, alongside outstanding storage performance, enduring stability through more than 100 cycles.

 

Specifically, the team’s OFETs boast precise patterning through photocrosslinking, enabling meticulous control of the semiconductor layer’s structure. The researchers identified diverse applications for their findings, spanning microelectronics and optoelectronics.

 

Professor Dae Sung Chung of POSTECH expressed his expectation by saying, “This research unveils fresh prospects in memory transistor realms, impacting data storage and processing technologies profoundly. It holds promise for innovation across a spectrum of disciplines, extending beyond the domain of transistors.”

 

The research was conducted with support from the BK21 Innovative Chemical Engineering Leadership Program of the National Research Foundation of Korea and a program of Toray Advanced Materials Korea.



Journal

Advanced Science

DOI

10.1002/advs.202401482

Article Title

Photophore-Anchored Molecular Switch for High-Performance Nonvolatile Organic Memory Transistor

Article Publication Date

30-Mar-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

New Study Warns Seasonal Freeze–Thaw Cycles Could Cause “Green” Biochar to Release Toxic Metals

New Study Warns Seasonal Freeze–Thaw Cycles Could Cause “Green” Biochar to Release Toxic Metals

September 20, 2025
blank

Gravitino Emerges as a Promising New Candidate for Dark Matter

September 19, 2025

Advancing Quantum Chemistry: Enhancing Accuracy in Key Simulation Methods

September 19, 2025

Neutrino Mixing in Colliding Neutron Stars Alters Merger Dynamics

September 19, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

TMolNet: Revolutionizing Molecular Property Prediction

NICU Families’ Stories Through Staff Perspectives

CT Scans in Kids: Cancer Risk Insights

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.