• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Photoacoustic endoscopy could improve Crohn’s disease treatment

Bioengineer by Bioengineer
April 24, 2019
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Better view of intestinal changes could lead to targeted treatments and fewer adverse effects

WASHINGTON — A newly developed endoscope could give doctors a better view of intestinal changes caused by Crohn’s disease. This additional information would help improve treatment of the painful and debilitating form of inflammatory bowel disease, which currently affects hundreds of thousands of U.S. adults.

Researchers from the University of Michigan describe the new device in The Optical Society (OSA) journal Biomedical Optics Express. The endoscope is used for photoacoustic imaging, a relatively new biomedical imaging method that uses light to produce sound waves in tissue that can be captured with ultrasound imaging.

“This new imaging technology could help more accurately plan therapy for each Crohn’s disease patient,” said Guan Xu, leader of the research team. “This would allow more targeted treatment and help minimize any adverse effects that might result from treatment.”

Making treatment decisions

In Crohn’s disease, both inflammation and fibrosis cause the development of strictures — areas of narrowing — in the intestines. Although strictures caused by inflammation can be treated with drugs, the ones caused by fibrosis must be removed surgically.

“Currently, there is no imaging modality that can be used in the intestine to distinguish inflammation from fibrosis,” said Xu. “The difficulty in accurately assessing the presence and development of ?brosis in the strictures adds a great deal of complexity to Crohn’s disease management decisions.”

In the new study, the researchers developed a capsule-shaped photoacoustic imaging endoscope to examine whether this imaging technique could be used to characterize inflammation and fibrosis in intestinal strictures. The capsule-shaped probe was 7 millimeters in diameter and 19 millimeters long.

They designed the endoscope to deliver near infrared light at 1310 nanometers because this wavelength is absorbed by collagen protein, which is characteristic of fibrosis. The light absorption causes the protein to expand slightly, leading to a mechanical vibration that can be captured using ultrasound imaging. To generate a strong signal, the researchers constructed the endoscope to maximize delivery of 1310-nanometer light.

Distinguishing inflammation and fibrosis

The researchers tested their new endoscope in rabbit models with intestinal narrowing caused by either inflammation only or a mix of fibrosis and inflammation. The experiments showed the endoscopic photoacoustic imaging approach could quantitatively differentiate inflammatory from fibrotic intestinal strictures. Another study in rabbits demonstrated that the endoscope could also quantify the development of fibrosis over time.

“The method we demonstrated is minimally invasive and can directly assess fibrosis in the intestinal stricture, which has not been demonstrated by conventional medical imaging modalities,” said Xu.

The researchers are now working to make the endoscope small enough to pass through the instrument channel of a colonoscope, a flexible fiber-optic instrument used to examine the large intestine. This could provide a surgeon with diagnostic information immediately before treatment without the need for additional procedures.

###

Paper: H. Lei, L. A. Johnson, K. A. Eaton, S. Liu, J. Ni, X. Wang, P. D. R. Higgins, G. Xu, “Characterizing intestinal strictures of Crohn’s disease in vivo by endoscopic photoacoustic imaging,” Biomed. Opt. Express, volume 10, issue 5, pp. 2542-2555 (2019).
DOI: https://doi.org/10.1364/BOE.10.002542

About Biomedical Optics Express

Biomedical Optics Express is OSA’s principal outlet for serving the biomedical optics community with rapid, open-access, peer-reviewed papers related to optics, photonics and imaging in the life sciences. The journal scope encompasses theoretical modeling and simulations, technology development, and biomedical studies and clinical applications. It is published by The Optical Society and edited by Christoph Hitzenberger, Medical University of Vienna. Biomedical Optics Express is an open-access journal and is available at no cost to readers online at OSA Publishing.

About The Optical Society

Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and business leaders who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org.

Media Contact:
[email protected]

Media Contact
James Merrick
[email protected]
http://dx.doi.org/10.1364/BOE.10.002542

Tags: Chemistry/Physics/Materials SciencesOptics
Share13Tweet7Share2ShareShareShare1

Related Posts

blank

Modular Organocatalysis Creates BN Isosteres via Wolff Rearrangement

September 10, 2025
Oxford AI Tool Revolutionizes Supernova Discovery Amidst Cosmic Noise

Oxford AI Tool Revolutionizes Supernova Discovery Amidst Cosmic Noise

September 10, 2025

Innovative Methods for Generating Methanol Using Electricity and Biomass

September 9, 2025

Isotope Tafel Analysis Reveals Proton Transfer Kinetics

September 9, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    53 shares
    Share 21 Tweet 13
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

In Vivo Itaconate Tracing Uncovers Degradation Kinetics

Fast Imaging Screen Finds Potent SKP2 Oncoprotein Degrader

Grid Cells Accurately Track Movement Amid Reference Switch

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.