• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Phonon imaging in 3D with a fiber probe

Bioengineer by Bioengineer
May 6, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: by La Cavera, S., Pérez-Cota, F., Smith, R.J. et al.

Ultrasound is an indispensable tool for the life sciences and various industrial applications due to its non-destructive, high contrast, and high resolution qualities. A persistent challenge over the years has been how to increase the resolution of an acoustic endoscope without drastically increasing the footprint of the probe, or risking the robustness of the ultrasonic transducer. In recent years, a host of all-optical ultrasonic imaging techniques have emerged – which generally utilise pulsed lasers and optical cavities to excite and detect ultrasound waves – without sacrificing device footprint, sensitivity, or the integrity of the transducer. Thus far these powerful techniques have achieved imaging resolutions on microscopic-mesoscopic length scales, however there is great interest in creating an ultrasonic fibre-probe which can probe disease on the nanoscopic-microscopic length scales inhabited by biological cells and tissue.

In a new paper published in Light: Science & Application, a team of scientists, led by Professor Matt Clark at the University of Nottingham, UK, has developed the first optical fibre ultrasonic imaging device which operates in the GHz range of the acoustic spectrum. At these frequencies the wavelength of sound becomes comparable to ultraviolet optical wavelengths and therefore provides an opportunity for high resolution imaging. Their phonon probe device makes use of a pump-probe technique called time-resolved Brillouin scattering, which pumps GHz frequency ultrasound from the tip of a 125 μm diameter optical fibre into a specimen, and uses a pulsed laser to “watch” one of the ultrasound waves (with a frequency of approximately 5 GHz) as it travels through the specimen. This time-of-flight acoustic signature simultaneously encodes two types of information about the specimen: its local mechanical properties and spatial profile. By scanning the device, these properties can be resolved in 3D with optical lateral resolution, and with axial resolution dictated by the sub-micrometre acoustic wavelengths.

Prof. Clark’s team applied this new technology to the parallel elastography-profilometry of objects as small as 10 x 2 μm (radius and height). The device was capable of 2.5 μm lateral resolution and could measure object height with 45 nm precision, which is over an order of magnitude smaller than the system’s optical wavelength. The team also demonstrated that the technology is fully compatible with optical fibre imaging bundles – containing tens of thousands of imaging pixels – which shows the scalability of the technique and its compatibility with standard endoscopy equipment.

According to the team, the development and application towards biological metrology and healthcare is most exciting. “The phonon probe is poised to supplement state-of-the-art bench-top profilometry equipment such as atomic force microscopy (AFM), stylus profilometry, and optical profilometry. It offers a combination of non-contact operation, label-free contrast, and high resolution, which is unique compared with the state-of-the-art. However, we believe that its ability to measure sub-surface mechanical properties, its bio-compatibility, and its endoscopic-potential are what set it apart. These features set the technology up for future in vivo measurements towards the ultimate goal of minimally invasive point-of-care diagnostics. The building blocks of disease can be traced down to the sub-cellular level, and are closely intertwined with mechanical properties. Having an endoscopic device that can access this regime will accelerate the development of elasticity-based diagnostics.”

###

Media Contact
Salvatore La Cavera III
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41377-021-00532-7

Tags: Chemistry/Physics/Materials SciencesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

Engineering Ultra-Stable Proteins via Hydrogen Bonding

Engineering Ultra-Stable Proteins via Hydrogen Bonding

November 19, 2025
Designing DNA for Controlled Charge Transport

Designing DNA for Controlled Charge Transport

November 18, 2025

Chemoselective Electrolysis Drives Precise Arene Hydroalkylation

November 17, 2025

LHAASO Sheds Light on the Origin of the Cosmic Ray “Knee” Phenomenon

November 16, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    202 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    119 shares
    Share 48 Tweet 30
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    211 shares
    Share 84 Tweet 53
  • Neurological Impacts of COVID and MIS-C in Children

    91 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Optimizing Hybrid Polymer Composites with ANN and GA

Fosinopril Triggers GSDME Pyroptosis Against NSCLC

Eco-Friendly Hydrophobic Coatings from Sugarcane Ash

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.