• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Phenothiazine derivatives may find use in photodynamic therapy

Bioengineer by Bioengineer
June 9, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A paper by Kazan Federal University was published in Russian Chemical Bulletin

IMAGE

Credit: Kazan Federal University

A group on organic compounds under Professor Ivan Stoikov’s guidance has been working on phenothiazine derivatives at Kazan Federal University since 2016.

Probably the most well-known derivative among the general public is methylene blue – a dye with antiseptic properties.

According to co-author Alena Khadieva, recent studies also show its high potential for use as photochemical and photodynamic agent that can be applied in the incision area during surgical operations and for localized therapy of cancerous tumors. The main problem of using compounds similar in structure to methylene blue is their aggregation in aqueous media.

This paper is devoted to the preparation of new phenothiazine derivatives containing phenyl groups instead of alkyl groups, which, according to published data, will provide greater photochemical activity. The presence of phenyl groups should also provide steric hindrances to the dimerization of phenothiazine derivatives. It also leads to high absorption in the near-infrared spectrum. Near-infrared radiation is characterized by high penetration of biological tissues without damaging them. Photoactive antimicrobial, antibacterial and anti-cancer agents based on organic oligoaromatic and polyaromatic compounds are currently attracting increased attention of researchers, since this direction opens up prospects for overcoming antibiotic resistance.

The next objective of the study was to ensure high stability of the dispersions of new phenothiazine derivatives. For this, a binary associate was obtained in which the phenothiazine derivative containing carboxyl groups acts as an acid, and the deprotonated phenothiazine derivative as a base. Due to the presence of complementary groups, stable dispersions were obtained. The stability of the dispersions was confirmed by dynamic light scattering, and the composition of the associate – by ultraviolet spectroscopy. The particle morphology was also studied by scanning electron microscopy, which made it possible to establish that the formation of the associate also changes the shape of the particles.

The synthesis of new phenothiazine derivatives containing, along with phenyl groups, fragments capable of forming intermolecular hydrogen bonds and capable of forming stable dispersions in water, will significantly expand the scope of their application in the composition of materials for photodynamic therapy.

In addition to working to obtain more stable dispersions, as well as water-soluble phenothiazine derivatives for use in medicine, the group also plans to move further to creating phenothiazine-cyclophane associates for use as colorimetric test samples to determine the content of toxic ions. Some of the results were published in Synthesis of Tris-pillar [5] arene and Its Association with Phenothiazine Dye: Colorimetric Recognition of Anions.

Both inquiries under Dr. Vladimir Gorbachuk’s supervision were financially supported by the Russian Science Foundation (Project No. 18-73-00293).

Due to the structural similarity of arylamine derivatives of phenothiazine with emeraldine (a popular conductive organic polymer), research for obtaining electrochemically active stable dispersions based on the emeraldine-phenothiazine associate is also seen as promising.

###

Media Contact
Yury Nurmeev
[email protected]

Original Source

https://kpfu.ru/eng/news-eng/phenothiazine-derivatives.html

Related Journal Article

http://dx.doi.org/10.1007/s11172-020-2765-z

Tags: Chemistry/Physics/Materials SciencesNeurochemistryPharmaceutical/Combinatorial Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

Michigan Startup Innovates Clothing Labels to Enhance Recycling and Brand Authentication

Michigan Startup Innovates Clothing Labels to Enhance Recycling and Brand Authentication

November 5, 2025
Kono Honored with American Physical Society’s Isakson Prize

Kono Honored with American Physical Society’s Isakson Prize

November 5, 2025

Resilient Order Emerges from Chasing and Splashing

November 5, 2025

Breakthrough in Attosecond Plasma Lens Technology Unveiled

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1299 shares
    Share 519 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

LncPrep+96kb Regulates Inhibin B Secretion in Ovaries

Autonomous Laboratory Mastering Material Growth Independently

Community Perspectives on Kangaroo Mother Care Transition

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.