• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Phase transitions in the early universe and their signals

Bioengineer by Bioengineer
April 19, 2022
in Chemistry
Reading Time: 2 mins read
0
Gravitational waves
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The early universe may chirp about unknown physics. A University of Helsinki research team has demonstrated how an early universe phase transition will lead to gravitational wave signals potentially visible in the upcoming satellite missions.  The research results were recently published in the prestigious journal Physical Review Letters.

Gravitational waves

Credit: David Weir

The early universe may chirp about unknown physics. A University of Helsinki research team has demonstrated how an early universe phase transition will lead to gravitational wave signals potentially visible in the upcoming satellite missions.  The research results were recently published in the prestigious journal Physical Review Letters.

Phase transitions, such as the boiling of water or the melting of a metal, are commonplace but fascinating phenomena that spur surprises decades after decades. They often occur as the temperature of a substance is changed, through the nucleation of bubbles of the new phase which then expands. In the end, the new phase has taken over the whole container.

The early universe was composed of a hot plasma whose temperature decreased as the universe expanded. It is speculated by many physicists that a phase transition may have occurred soon after the Big Bang. This would then had lead to nucleation of bubbles and their subsequent collisions. Such collisions would create powerful ripples in spacetime which could be observed in planned gravitational wave detectors. The Laser Interferometer Space Antenna (LISA), with a provisional launch date in 2037, is one such probe that may be able to detect these early Universe spacetime ripples.

However, to describe early universe phase transitions has been challenging. The University of Helsinki researchers Oscar Henriksson, Mark Hindmarsh, and Niko Jokela, together with colleagues at the U. of Oviedo and the U. of Sussex, attacked this problem using a technique from string theory known as holographic duality. They showed how the duality can be used to map the problem to a more tractable one, and how the important quantities describing the bubble nucleation and the associated gravitational wave signals can be extracted.

In the future these new methods can be applied directly in more realistic scenarios, where the starting point would be a possible extension of Standard Model of particle physics.

The results were published on 29.3.2022 in the prestigious journal Physical Review Letters. The group is also tackling the remaining obstacle, the computation of the bubble wall velocity, needed for the full first principles description of early universe phase transition and the imprint it makes on the gravitational wave spectrum.

Reference:

Gravitational Waves at Strong Coupling from an Effective Action, Fëanor Reuben Ares, Oscar Henriksson, Mark Hindmarsh, Carlos Hoyos, and Niko Jokela, Phys. Rev. Lett. 128, 131101 – Published 29 March 2022

Contact: Niko Jokela, University of Helsinki, [email protected]



Journal

Physical Review Letters

DOI

10.1103/PhysRevLett.128.131101

Method of Research

Computational simulation/modeling

Article Title

Gravitational Waves at Strong Coupling from an Effective Action

Article Publication Date

29-Mar-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Complete Synthesis of Hemiketal Tetrodotoxin Achieved

Complete Synthesis of Hemiketal Tetrodotoxin Achieved

September 19, 2025
Early Universe Galaxies Unveil Hidden Dark Matter Maps

Early Universe Galaxies Unveil Hidden Dark Matter Maps

September 18, 2025

Chicago Quantum Exchange-Led Coalition Reaches Final Stage in NSF Engine Competition

September 18, 2025

“First-ever observation of quantum squeezing in a nanoscale particle”

September 18, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Synergistic FLT3 and ERK1/2 Inhibitors Target AML

Mentally Strained and Enduring Physical Cold: A Scientific Perspective

Prof. Wei Lu Explores Infrared Physics Insights

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.