• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Phase I trial finds experimental drug safe in treating chronic lymphocytic leukemia

Bioengineer by Bioengineer
June 1, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Reporting results from a first-in-human phase I clinical trial, researchers at University of California San Diego School of Medicine have found that treatment with cirmtuzumab, an experimental monoclonal antibody-based drug, measurably inhibited the "stemness" of chronic leukemia cancer (CLL) cells — their ability to self-renew and resist terminal differentiation and senescence.

The findings are published in the June 1 issue of Cell Stem Cell.

"In this trial, we treated 26 patients with relapsed CLL with increasing amounts of cirmtuzumab, which we found was exceptionally well-tolerated. Patients received only a short-course of treatment and this appeared to halt disease progression, allowing most patients to forego any additional therapy for more than eight months," said Michael Choi, MD, assistant clinical professor and first author of the paper. "This is noteworthy as the patients who enrolled in the trial had leukemia that was getting worse and causing disruption of normal blood production or other clinical problems."

CLL is the most common form of blood cancer in adults, resulting in a progressive and deadly overabundance of white blood cells, called lymphocytes. CLL accounts for roughly one quarter of new cases of leukemia (21,000) annually and roughly 4,500 deaths each year.

Cirmtuzumab targets a molecule called ROR1 that normally is used only by embryonic cells during early development, but which is abnormally exploited by cancer cells to promote tumor growth and spread, otherwise known as metastasis. Metastasis is responsible for 90 percent of all cancer-related deaths.

Because ROR1 is not used by normal adult cells, scientists believe it is a unique marker of cancer cells in general and cancer stem cells in particular. The latter often elude or become resistant to cancer therapies, allowing treated cancers to recur. ROR1 appears to drive tumor growth and disease spread and scientists think that presents an excellent novel target for anti-cancer therapy.

Choi, with senior authors Thomas Kipps, MD, PhD, Distinguished Professor of Medicine and deputy director of research at UC San Diego Moores Cancer Center, Catriona Jamieson, MD, PhD, deputy director of UC San Diego Moores Cancer Center, and colleagues describe the results of the clinical trial and their findings that treatment with cirmtuzumab can block the capacity of ROR1 to drive tumor growth, self-renewal and metastasis.

"We are excited by the finding that the leukemia cells of treated patients reversed their expression pattern of thousands of genes associated with what's called oncogenic dedifferentiation or 'stemness,' which is associated with the capacity of cancer cells to self-renew and spread throughout the body," said Kipps, whose group originally developed cirmtuzumab as one of six projects initially funded through the California Institute for Regenerative Medicine's (CIRM) HALT leukemia grant to co-principal investigators Jamieson and Dennis Carson, MD.

"This was a phase I safety trial with specific, limited goals, which it met with encouraging results," said Jamieson, who also heads the CIRM-funded Alpha Clinic, which is investigating therapies using stem cells or, in the case of cancer, targeting cancer stem cells.

Cancer stem cells are believed responsible for failure of conventional treatments to eradicate most types of cancer. In this regard, said Jamieson, cirmtuzumab's therapeutic potential may not to be limited to patients with CLL, noting that "prior research by Kipps and colleagues found cirmtuzumab may be effective in targeting cancer stem cells in patients with other cancers, such as ovarian or breast cancer."

Additional clinical studies of cirmtuzumab are ongoing or planned. Earlier this year, UC San Diego researchers launched a phase Ib/II clinical trial to evaluate the combined effectiveness of a standard of care drug called ibrutinib (marketed as Imbruvica) with cirmtuzumab to B-cell malignancies, which include leukemias and lymphomas.

"The next step is to pursue a phase II trial with more patients that will inform us more specifically about how and how well the treatment works," said Jamieson.

For the cirmtuzumab trial, the UC San Diego researchers are collaborating with Oncternal Therapeutics, a San Diego-based biotechnology company which has a license from UC San Diego to develop and commercialize antibodies and antibody-related binding agents stemming from research of Kipps and colleagues.

"Vital support from a CIRM clinical grant, the Sanford Stem Cell Clinical Center, Oncternal and the CIRM Alpha Stem Cell Clinic Network will expand access to this cutting-edge cancer stem cell targeted therapy for the benefit of patients throughout California," said Jamieson.

###

Co-authors of the study are: George F. Widhopf II, Emanuela M. Ghia, Reilly L. Kidwell, Md Kamrul Hasan, Jian Yu, Laura Z. Rassenti, Liguang Chen, Yun Chen, Emily Pittman, Minya Pu, Karen Messer, Charles E. Prussak and Januario E. Castro, all at UC San Diego.

Media Contact

Scott LaFee
[email protected]
858-249-0456
@UCSanDiego

http://www.ucsd.edu

http://dx.doi.org/10.1016/j.stem.2018.05.018

Share12Tweet7Share2ShareShareShare1

Related Posts

Sanger vs. Next-Gen Sequencing of WWII Victims

September 15, 2025

Unraveling Gut Microbiota’s Role in Breast Cancer

September 14, 2025

How SARS-CoV-2 Spike Protein Activates TLR4

September 14, 2025

Interpretable Deep Learning for Anticancer Peptide Prediction

September 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Sanger vs. Next-Gen Sequencing of WWII Victims

Next-Gen LED Therapeutics: Challenges and Opportunities

Impact of Electrode Material on Radish Germination

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.