• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

PET radiotracer design for monitoring targeted immunotherapy

Bioengineer by Bioengineer
April 7, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Sam Gambhir, MD, PhD, Stanford University

In an article published in the April issue of "The Journal of Nuclear Medicine," researchers at Stanford University in California provide a template for assessing new positron emission tomography (PET) radiotracers that can accurately identify molecules in cancer cells that prevent the immune system from attacking the cancer.

A drug that blocks a cancer's inhibitory checkpoint molecules is called an immune checkpoint inhibitor and this form of immunotherapy has emerged as a promising cancer treatment approach. However, the lack of imaging tools to assess immune checkpoint expression has been a major barrier to predicting and monitoring response to a clinical checkpoint blockade.

"Because immunotherapies for cancer are expanding, methods to optimize them for an individual patient through molecular imaging are needed," explains Sam Gambhir, MD, PhD, at Stanford University. "Using animal models, this study shows the development of several new engineered PET tracers that can help image the immune system in action and be used to monitor checkpoint inhibitor therapy."

The study assessed practical immunoPET radiotracer design modifications and their effects on human PD-L1 immune checkpoint imaging. The researchers sought to optimize engineering design parameters including chelate, glycosylation, and radiometal to develop a non-invasive molecular imaging tool for eventual monitoring of clinical checkpoint blockade.

Gambhir points out, "This research will ultimately allow for translation to human imaging of the tracer that worked best in animal models. An effective immunoPET tracer will help patients receiving checkpoint inhibitor immunotherapy get optimal treatment and have the best chance for fighting their cancer."

Molecular imaging is playing an increasingly integral role in immunotherapy and personalized medicine. Looking ahead, Gambhir envisions "a lot more use of PET/CT or PET/MR imaging for patients undergoing immunotherapy." He adds, "This and related research will also help us develop other imaging approaches for understanding the immune system in action."

###

The authors of "Practical ImmunoPET radiotracer design considerations for human immune checkpoint imaging" include Aaron T. Mayer, Arutselvan Natarajan, Sydney R. Gordon, Roy L. Maute, Melissa N. McCracken, Aaron M. Ring, Irving L. Weissman and Sanjiv S. Gambhir, Stanford University, Stanford, California.

Support for this study was provided by Kenneth Lau, Frezghi Habte, the Canary Foundation and the Ben and Catherine Ivy Foundation. This material is based upon work supported by a National Science Foundation Graduate Research Fellowship Grant (DGE-114747) and a NIH TBi2 Training Grant (2T32EB009653-06). MicroPET/CT imaging and Gamma Counter measurements were performed in the SCi3 Stanford Small Animal Imaging Service Center.

Please visit the SNMMI Media Center to view the PDF of the study, including images, and more information about molecular imaging and personalized medicine. To schedule an interview with the researchers, please contact Laurie Callahan at (703) 652-6773 or [email protected]. Current and past issues of The Journal of Nuclear Medicine can be found online at http://jnm.snmjournals.org.

About the Society of Nuclear Medicine and Molecular Imaging

The Society of Nuclear Medicine and Molecular Imaging (SNMMI) is an international scientific and medical organization dedicated to raising public awareness about nuclear medicine and molecular imaging, a vital element of today's medical practice that adds an additional dimension to diagnosis, changing the way common and devastating diseases are understood and treated and helping provide patients with the best health care possible.

SNMMI's more than 17,000 members set the standard for molecular imaging and nuclear medicine practice by creating guidelines, sharing information through journals and meetings and leading advocacy on key issues that affect molecular imaging and therapy research and practice. For more information, visit http://www.snmmi.org.

Media Contact

Laurie Callahan
[email protected]
@SNM_MI

http://www.snm.org

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Encouraging Active Travel Among Seniors in Daokou

October 21, 2025
Eco-Friendly Bacillus amyloliquefaciens NS56 Transforms Feather Waste

Eco-Friendly Bacillus amyloliquefaciens NS56 Transforms Feather Waste

October 21, 2025

UH Researchers Shatter Thermal Conductivity Limits with Breakthrough in Boron Arsenide

October 21, 2025

Introducing Evidence Brief: A New Tool for Research Translation

October 21, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1271 shares
    Share 508 Tweet 317
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    304 shares
    Share 122 Tweet 76
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    138 shares
    Share 55 Tweet 35
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    130 shares
    Share 52 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Encouraging Active Travel Among Seniors in Daokou

Eco-Friendly Bacillus amyloliquefaciens NS56 Transforms Feather Waste

UH Researchers Shatter Thermal Conductivity Limits with Breakthrough in Boron Arsenide

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.