• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Pepsin-degradable plastics of bionylons from itaconic and amino acids

Bioengineer by Bioengineer
May 11, 2021
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Image courtesy: Tatsuo Kaneko and Mohammad Asif Ali from Japan Advanced Institute of Science and Technology.

Point:

  • Novel chiral diacid monomers were synthesized.
  • Chirally interactive BioNylons were prepared.
  • BioNylon showed thermal/mechanical performances than conventional Nylons.
  • BioNylons disintegrated and degraded with pepsin.

Summary:

Marine plastic waste problems have been more serious year by year. One of the worst issues is that creatures in ocean are going extinct by mistakenly swallowing them.. Conventional biodegradable plastics are degradable in digestive enzymes, but their performances are too low to use in society. In this study, researchers from JAIST have used bio-derived resources such as itaconic acid and amino acid for the syntheses of high-performance BioNylons having the pepsin degradation function.

Ishikawa, Japan – Currently available conventional nylon such as Nylon 6, Nylon 66, and Nylon 11 are nondegradable. On the other hand, BioNylons derived from itaconic acid showed higher performances than conventional ones and degradability in soil, but degradability under the digestive enzymes was not confirmed.

To tackle these issues, a team of researchers from the Japan Advanced Institute of Science and Technologies (JAIST) are investigating syntheses of new BioNylons with their degradability under pepsin enzyme. Their latest study, published in Advanced Sustainable Systems-Wiley-VCH on April 2021, was led by Professor Tatsuo Kaneko and Dr. Mohammad Asif Ali.

In this study, BioNylons were synthesized based on chemically developed novel chiral dicarboxylic acids derived from renewable itaconic and amino acids (D- or L-leucine). Further, BioNylons were prepared via melt polycondensation of hexamethylenediamine with chirally interactive heterocyclic diacid monomers, as shown in Figure 1. The chiral interactions were derived from the diastereomeric mixture of the racemic pyrrolidone ring and the chiral amino acids of leucine. As a result, the polyamides showed a glass transition temperature, Tg, of approximately 117 °C and a melting temperature, Tm, of approximately 213 °C, which were higher than those of conventional BioNylon 11 (Tg of approximately 57 °C). The BioNylons also showed high Young’s moduli, E, and mechanical strengths, σ, ranging from 2.2-3.8 GPa and 86-108 MPa, respectively. Such materials can be used for fishing nets, ropes, parachutes, and packaging materials, as a substitute for conventional nylons. The BioNylons including peptide linkage showed enzymatic degradation using pepsin, which is a digestive enzyme found in mammal stomach. The fact that pepsin-degradation can connect with biodegradation in the stomach of marine mammals. Such an innovative molecular design for high-performance nylons by controlling chirality can lead to establish a sustainable carbon negative society and energy conservation by weight saving.

###

This research was carried out with the support of “Environment Research and Technology Development Fund (1-2005) of Environmental Restoration and Conservation Agency, ERCA. (Principal Investigator: Prof. Tatsuo Kaneko).

Media Contact
Tatsuo Kaneko
[email protected]

Original Source

https://www.jaist.ac.jp/english/

Related Journal Article

http://dx.doi.org/10.1002/adsu.202100052

Tags: Biomedical/Environmental/Chemical EngineeringChemistry/Physics/Materials SciencesPolymer Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

DOG Gene Family in Wheat Drives Seed Dormancy

DOG Gene Family in Wheat Drives Seed Dormancy

October 4, 2025
blank

Discovery of MrSTP20: Sugar Transporter in Salt Stress

October 4, 2025

SNARE Neofunctionalization Driven by Vacuole Retrieval

October 4, 2025

Exploring Shigella Phage Sf14’s tRNA Contributions

October 3, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    93 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    69 shares
    Share 28 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding MAG, PTEN, NOTCH1 in Axonal Regeneration

Revolutionizing Drug Discovery with Customized 3D Molecular Design

Addressing Laboratory Errors in University Hospital

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.