• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

People matter

Bioengineer by Bioengineer
December 1, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

An interdisciplinary study released this month in the Proceedings of the National Academy of Sciences of the United States of America combines social and physical science in new ways, seeking to understand how changes in Arctic resource-sharing behaviors could affect highly cooperative communities and the households within.

"It's a unique piece of science in that both process and results are an outcome of collaboration and interdisciplinary science — communities, social scientists and physicists, ethnographic context and network math" says Shauna BurnSilver, assistant professor of environmental anthropology at the Arizona State University School of Human Evolution and Social Change and co-investigator of the study. "Combined, this joint approach yielded ways to think about change more than any discipline alone would have."

Funded by the Bureau of Ocean Energy Management, the study focused on three indigenous Alaskan communities – two Iñupiaq and one Gwich'in Athabascan – whose livelihoods combine subsistence hunting and fishing and the cash economy. These households also depend on networks of social relationships to share food, labor and equipment in the face of high costs and resource variability.

Three researchers — BurnSilver, Professor of Resource Policy and Management Gary Kofinas (University of Alaska Fairbanks), and Natural Resources graduate student James Magdanz (at the time, a resource specialist for the Alaska Department of Fish and Game) — worked in the field to gather data on the flow of food and resources via these community and family partnerships, exchanges, and sharing. They found that between 60-75% of all food flowing between households in these communities occurred based on social relationships rather than households working alone, findings that corroborate cultural narratives of Iñupiaq and Gwich'in as "people who share."

BurnSilver then sent the data to social-ecological systems modeler Jacopo Baggio (previously with ASU's Center for Behavior, Institutions and the Environment, now with Utah State University, Logan) and two European physicists/mathematicians — Alex Arenas and Manlio De Domenico (Rovira i Virgili University, Spain) — who developed new methods for analyzing directed and weighted multiplex networks. A multiplex approach preserves key details on the relative importance of one type of relationship or species within a network, rather than making all ties equivalent.

The resulting model was used to mimic the effects of potential social changes to that network structure versus climatic or ecological shocks that could reduce community connectedness and therefore resource abundance, directly and overall.

"Social and ecological relationships are inherently complex so the ability to use a new methodology based on multiplex networks opens up really exciting perspectives," says De Dominico.

"The integration of high quality social research and the latest methodological advances to analyze multiplex networks is how research boundaries can and will be pushed forward," Baggio adds. "Such integration sheds light on complex issues like interdependencies between social and ecological changes."

Ultimately, the team was able to demonstrate that the loss of individual social relationships, such as sharing, or important households from these communities' social networks, could have even greater impacts on system connectivity than the loss of key animal species.

As BurnSilver explains, the takeaway is meaningful, and not just for the inhabitants of Alaska.

"Economic and climatic changes explored here reflect broader changes occurring globally – in places where social relationships remain the glue that holds people together and define the way that people experience and cope with change," she says.

"Given all the attention to species losses in the Arctic due to climate change, we think this is an intriguing result," adds Magdanz. "People matter, and social relations matter."

###

To access the abstract and a PDF of the full study "Multiplex social ecological network analysis reveals how social changes affect community robustness more than resource depletion," visit: http://www.pnas.org/content/early/2016/11/14/1604401113.abstract.

Researchers and Current/Past Affiliations:
Shauna BurnSilver
School of Human Evolution and Social Change, Arizona State University

Gary Kofinas
School of Natural Resources and Extension and Institute of Arctic Biology, University of Alaska Fairbanks

Jacopo Baggio
Department of Environment and Society, Utah State University, Logan
At Time of Study: ASU's Center for Behavior, Institutions and the Environment

James Magdanz
School of Natural Resources and Extension, University of Alaska Fairbanks
At Time of Study: Alaska Department of Fish and Game

Manlio De Dominico
Computer and Mathematics Engineering Department, Rovira i Virgili University, Spain

Alex Arenas
Computer and Mathematics Engineering Department, Rovira i Virgili University, Spain

Media Contact

Aaron Pugh
[email protected]
480-727-6577
@ASU

http://asunews.asu.edu/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Cylindrical Spathe’s Handedness Matches Arisaema Spiral Direction

Cylindrical Spathe’s Handedness Matches Arisaema Spiral Direction

August 23, 2025
blank

Sustainable Detection of Ofloxacin with PGCN-Modified Electrodes

August 23, 2025

Ancient Skull Sheds Light on Plotopteridae Origins

August 23, 2025

Predicting Extrahepatic Recurrence After Liver Cancer Surgery

August 23, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Cylindrical Spathe’s Handedness Matches Arisaema Spiral Direction

Sustainable Detection of Ofloxacin with PGCN-Modified Electrodes

Ancient Skull Sheds Light on Plotopteridae Origins

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.