• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Peering deep into the cell to reveal essential components in cell division

Bioengineer by Bioengineer
July 10, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Tsukuba, Japan – The cell is the basic biological unit of all known living organisms, and the core of the cell is the nucleus, which contains the majority of the cell's genetic material.

The largest structure in the nucleus of eukaryotic cells is the nucleolus. It is best known as the site of production of ribosome – the "factory" for protein production. The nucleolus also plays a role in the cell's response to stress and is tightly connected to cell cycle progression.

In spite of this great deal of knowledge about the nucleolus, the relationship between cell cycle progression and nucleolar integrity remains poorly understood. Gaining a deeper understanding of the nucleolus is valuable, as malfunction of nucleoli can be the cause of several human conditions called nucleolopathies. Furthermore, the nucleolus has been investigated as a target for cancer diagnosis.

Recently, a team of University of Tsukuba-centered researchers made a breakthrough in the study of the nucleolus, and published their findings in Science Advances.

"We examined the role of nucleolar proteins in mitosis (cell division) in human cell lines by performing a global analysis using small interfering RNAs specific to nucleolar proteins; we focused on the protein NOL11, with currently unknown mitotic functions," first author of the study Yuki Hayashi explains. "NOL11 depletion reduced ribosomal RNA levels and caused nucleolar disruption during interphase."

Nucleolar disassembly during mitosis appears to be a programmed event in line with the activation of the protein kinase Cdk1 that is tightly regulated during the cell cycle. In contrast to the physiological mitotic nucleolar disassembly, "untimely" interphase nucleolar disruption is induced when rRNA transcription is suppressed by a variety of stressors. Notably, when interphase nucleolar disruption is induced following depletion of several rRNA transcription factors, Wee1, a kinase that phosphorylates and inhibits Cdk1, accumulates. At the same time, Cdk1 activity decreases. All these lead to delayed mitotic entry.

"Our findings therefore suggest that maintenance of nucleolar integrity during interphase is essential for proper cell cycle progression to mitosis via the regulation of Cdk1 and Wee1," senior author Keiji Kimura says. "This is the first study, to our knowledge, to provide evidence that the maintenance of nucleolar structure is essential for proper timing of mitotic entry."

###

Media Contact

Masataka Watanabe
[email protected]
81-298-532-039

http://dx.doi.org/10.1126/sciadv.aap7777

Share12Tweet7Share2ShareShareShare1

Related Posts

Bacterial Resistance to Heavy Metals and Chromium Reduction

Bacterial Resistance to Heavy Metals and Chromium Reduction

September 18, 2025
Could Enhancing This Molecule Halt the Progression of Pancreatic Cancer?

Could Enhancing This Molecule Halt the Progression of Pancreatic Cancer?

September 17, 2025

3D Jaw Analysis Uncovers Omnivorous Diet of Early Bears

September 17, 2025

Wild Chimpanzees Consume the Equivalent of Several Alcoholic Drinks Daily, Study Finds

September 17, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Analog Speech Recognition via Physical Computing

Organic Cofactor Enables Energy-Transfer Photoproximity Labeling

Forensic Imaging Uncovers Torture in Asylum Seekers

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.