• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Pause to read the traffic sign: Regulation of DNA transcription in bacteria

Bioengineer by Bioengineer
July 18, 2017
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

One of the central tenets of biology is that information flows from DNA to RNA in order to encode proteins, which function in the cell. Arguably just as critical as the genetic code is the timing of this information flow. By producing the right RNA and right proteins at the right time, a cell can effectively strategize its survival and success. One such regulatory element, the riboswitch, has excited interest as a potential target for antibiotics. After over 10 years of research, Prof. Harald Schwalbe's research group at the Goethe University, in collaboration with the Landick group at the University of Wisconsin, Prof. Jens Wöhnert from Goethe-University's Biology Department and the Süß group at the Technische Universität Darmstadt, has put together the puzzle pieces of a riboswitch-based regulatory process in the bacterium Bacillus subtilis, presenting the most extensive model of the timing of riboswitch action to date.

A riboswitch is a short piece of RNA that can fold into different structures, depending on whether or not a small messenger molecule is binds to it. In transcriptional riboswitches, these different structures signal the nearby RNA polymerase to continue producing RNA or to stop. In their recent publication in ELife, the Schwalbe group and their collaborators released molecular structures of the xpt-pbuX riboswitch in the off-position after synthesis and in the on-position upon binding by the small messenger molecule guanine. They also demonstrated that this switch to the on-position takes a certain amount of time. This sets a certain requirement on this regulatory process.

As RNA polymerase flies along a DNA strand, producing the corresponding RNA, it reaches the code for the xpt-pbuX switch, makes the riboswitch, and continues on. If guanine is not around, the RNA polymerase would detect the default off-position and halt synthesis. However, if guanine were to bind the riboswitch, the riboswitch would need to refold into the on-position, and RNA polymerase would have to wait long enough to detect the new conformation. Otherwise, it would always read "off", and that gene would never be read. Schwalbe and coworkers found that just such a pause does exist, and it's encoded into the DNA. After producing the xpt-pbuX switch, the RNA polymerase encounters this "pause site" on the DNA code and slows down, allowing the right amount of time for the riboswitch to refold.

###

This work provides the most in-depth kinetic model of riboswitch function to date and underscores the importance of pause sites in our understanding of riboswitches. As researchers consider using riboswitches as tools in synthetic biology applications, they will do well do keep the speed of the RNA polymerase in mind.

Publication: Steinert H, Sochor F, Wacker A, Buck J, Helmling C, Hiller F, Keyhani S, Noeske J, Grimm S, Rudolph MM, Keller H, Mooney RA, Landick R, Suess B, Fürtig B, Wöhnert J, Schwalbe H.; Pausing guides RNA folding to populate transiently stable RNA structures for riboswitch-based transcription regulation.; eLife; 2017; doi: 10.7554/eLife.21297.

Further Information: Prof. Dr. Harald Schwalbe, Institute for Organic Chemistry, email: [email protected].

Media Contact

Harald Schwalbe
[email protected]
069-798-29737
@goetheuni

http://www.uni-frankfurt.de

Share12Tweet7Share2ShareShareShare1

Related Posts

Segatella Worsens Heart Failure via TLR4 Pathway

October 21, 2025

Childhood Trauma Linked to Mobile Phone Addiction

October 21, 2025

Anorexia: Sibling Perspectives on Childhood Understanding

October 21, 2025

Proteomic Insights Link Myeloma Prognosis to Coagulation

October 21, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1271 shares
    Share 508 Tweet 317
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    303 shares
    Share 121 Tweet 76
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    137 shares
    Share 55 Tweet 34
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    130 shares
    Share 52 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Scalable, Interpretable Model Explainer Enhances Multi-View Integration

Optimizing Machine Learning for Bioethanol from Sugarcane

Novel Word-Embedding Method Enhances Access Control Models

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.