• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Partnership at a distance: Deep-frozen helium molecules

Bioengineer by Bioengineer
December 7, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Peter Evers

FRANKFURT. Helium atoms are loners. Only if they are cooled down to an extremely low temperature do they form a very weakly bound molecule. In so doing, they can keep a tremendous distance from each other thanks to the quantum-mechanical tunnel effect. As atomic physicists in Frankfurt have now been able to confirm, over 75 percent of the time they are so far apart that their bond can be explained only by the quantum-mechanical tunnel effect.

The binding energy in the helium molecule amounts to only about a billionth of the binding energy in everyday molecules such as oxygen or nitrogen. In addition, the molecule is so huge that small viruses or soot particles could fly between the atoms. This is due, physicists explain, to the quantum-mechanical "tunnel effect". They use a potential well to illustrate the bond in a conventional molecule. The atoms cannot move further away from each other than the "walls" of this well. However, in quantum mechanics the atoms can tunnel into the walls. "It's as if two people each dig a tunnel on their own side with no exit", explains Professor Reinhard Dörner of the Institute of Nuclear Physics at Goethe University Frankfurt.

Dörner's research group has produced this helium molecule in the laboratory and studied it with the help of the COLTRIMS reaction microscope developed at the University. The researchers were able to determine the strength of the bond with a level of precision not previously achieved and measured the distance between the two atoms in the molecule. "The helium molecule is something of a touchstone for quantum-mechanical theories, as the value of the binding energy theoretically predicted is heavily dependent on how accurately all physical and quantum-mechanical effects were taken into account", explains Dörner.

Even the theory of relativity, which is otherwise mainly required for astronomical calculations, had to be incorporated here. "If even just a small mistake occurs, the calculations produce major deviations or even indicate that a helium molecule cannot exist at all", says Dörner. The precision measurements performed by his research group will serve as a benchmark for future experiments.

Two years spent taking measurements in the cellar

Dörner's research group began investigating the helium molecule back in 2009, when the German Research Foundation awarded him a Reinhart Koselleck Project and funding to the tune of € 1.25 million. "This type of funding is risk capital, as it were, with which the German Research Foundation supports experiments with a long lead time", explains Dörner. He was thus able to design and set up the first experiments with his group. Initial results were achieved by Dr. Jörg Voigtsberger in the framework of his doctoral dissertation. "In the search for atoms which 'live in the tunnel', Jörg Voigtsberger spent two years of his life in the cellar", recalls Dr. Till Jahnke, senior lecturer and Voigtberger's supervisor at the time. It is there, in the cellar, that the laser laboratory of the atomic physics group is housed.

Stefan Zeller, the next doctoral researcher, considerably improved the equipment with the help of Dr. Maksim Kunitski and increased measurement precision still further. To do so, one of his tasks was to shoot at the very weakly bonded helium molecule with FLASH, the free-electron laser at the DESY research centre in Hamburg and the largest "photon canon" in Germany. "Stefan Zeller's work was remarkable. It was his untiring effort, his excellent experimental research skills and his ability not to be disheartened by temporary setbacks which made our success possible at all", remarks Professor Dörner, Zeller's doctoral supervisor.

Already beforehand the results have attracted considerable interest at national and international level. They will now appear in the renowned journal "Proceedings of the National Academy of Sciences of the United States of America (PNAS)" and are also part of the research work for which the group was awarded the Helmholtz Prize 2016.

###

Media Contact

Prof. Dr. Reinhard Dörner
[email protected]
@goetheuni

http://www.uni-frankfurt.de

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Nanodiamonds and Hormonal Treatments: A Novel Approach to Stimulate Fetal Lung Development in Rare Conditions

August 27, 2025

Many Advanced Cancer Patients Report Treatment Misaligned with Personal Care Goals

August 27, 2025

Advances in Neuroimaging and Digital Monitoring Illuminate Mood Instability in Bipolar Disorder

August 27, 2025

Study Links Biomolecular Condensates to Childhood Brain Cancer

August 27, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nanodiamonds and Hormonal Treatments: A Novel Approach to Stimulate Fetal Lung Development in Rare Conditions

Many Advanced Cancer Patients Report Treatment Misaligned with Personal Care Goals

Advances in Neuroimaging and Digital Monitoring Illuminate Mood Instability in Bipolar Disorder

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.