• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Particulate plutonium released from the Fukushima Daiichi meltdowns

Bioengineer by Bioengineer
July 14, 2020
in Chemistry
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New research strongly suggests that the nano-scale heterogeneity that is common in normal nuclear fuels is still present in the fuel debris that remains inside the Fukushima’s damaged reactors.

IMAGE

Credit: Kyushu University

Small amounts of plutonium (Pu) were released from the damaged Fukushima Daiichi Nuclear Power Plant (FDNPP) reactors into the environment during the site’s 2011 nuclear disaster. However, the physical, chemical, and isotopic form of the released Pu has remained unknown.

Now, recent work published in the journal Science of the Total Environment has shown that Pu was included inside cesium-rich microparticles (CsMPs) that were emitted from the site. CsMPs are microscopic radioactive particles that formed inside the Fukushima reactors when the melting nuclear fuel interacted with the reactor’s structural concrete. Due to loss of containment in the reactors, the particles were released into the atmosphere; many were then deposited across Japan.

Studies have shown that the CsMPs are incredibly radioactive and that they are primarily composed of glass (with silica from the concrete) and radio-cesium (a volatile fission product formed in the reactors). Whilst the environmental impact and distribution of the CsMPs is still an active subject of debate, learning about the chemical composition of the CsMPs has been shown to offer a much-needed insight into the nature and extent of the FDNPP meltdowns.

The study published in Science of the Total Environment, involving scientists from Japan, Finland, France, Switzerland, the UK, and USA, was led by Dr. Satoshi Utsunomiya and graduate student Eitaro Kurihara (Department of Chemistry, Kyushu University). The team used a combination of advanced analytical techniques (synchrotron-based micro-X-ray analysis, secondary ion mass spectrometry, and high-resolution transmission electron microscopy) to find and characterize the Pu that was present in the CsMP samples.

The researchers initially discovered incredibly small uranium-dioxide inclusions, of less than 10 nanometers in diameter, inside the CsMPs; this indicated possible inclusion of nuclear fuel inside the particles. Detailed analysis then revealed, for the first-time, that Pu-oxide concentrates were associated with the uranium, and that the isotopic composition of the U and Pu matched that calculated for the FDNPP irradiated fuel inventory.

Dr Utsunomiya stated “these results strongly suggest that the nano-scale heterogeneity that is common in normal nuclear fuels is still present in the fuel debris that remains inside the site’s damaged reactors. This is important information as it tells us about the extent / severity of the melt-down. Further, this is important information for the eventual decommissioning of the damaged reactors and the long-term management of their wastes.”

With regards environmental impact, Dr Utsunomiya states “that as we already know that the CsMPs were distributed over a wide region in Japan (up to 230 km from the FDNPP), small amounts of Pu were likely dispersed in the same way.”

Professor Gareth Law, a co-author on the paper from the University of Helsinki, indicated that the team “will continue to characterize and experiment with the CsMPs, in an effort to better understand their long-term behavior and environmental impact. It is clear that CsMPs are an important vector of radioactive contamination from nuclear accidents.”

Professor Bernd Grambow, a co-author from Nantes/France, states that “while the Pu released from the damaged reactors is low compared to that of Cs; the investigation provides crucial information for studying the associated health impact.”

Professor Rod Ewing at Stanford University emphasized that “the study used an extraordinary array of analytical techniques in order to complete the description of the particles at the atomic-scale. This is the type of information required to describe the mobility of plutonium in the environment.”

Utsunomiya concluded “It took a long time to publish results on particulate Pu from Fukushima. I would like to emphasize that this is a great achievement of international collaboration. It’s been almost ten years since the nuclear disaster at Fukushima,” he continued “but research on Fukushima’s environmental impact and its decommissioning are a long way from being over.”

###

NOTE: Integration of the state-of-the-art analytical techniques was accomplished through a world-wide international network that included Kyushu University, University of Tsukuba, Tokyo Institute of Technology, National Institute of Polar Research, University of Helsinki, Paul Scherrer Institute, Diamond Light Source, SUBATECH (IMT Atlantique, CNRS, University of Nantes), and Stanford University.  

Additional information:

Satoshi Utsunomiya, Associate Professor

Department of Chemistry, Kyushu University, Japan

Tel: +81-92-802-4168 Fax: +81-92-802-4168

E-mail: [email protected]

Gareth Law, Professor

Department of Chemistry, Radiochemistry Unit, University of Helsinki

Tel: +358-50-55-60920

E-mail: [email protected]

Media Contact
Aino Pekkarinen
[email protected]

Original Source

https://www.helsinki.fi/en/news/science-news/particulate-plutonium-released-from-the-fukushima-daiichi-meltdowns

Related Journal Article

http://dx.doi.org/10.1016/j.scitotenv.2020.140539

Tags: Chemistry/Physics/Materials SciencesNuclear Physics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Selective Arylating Uncommon C–F Bonds in Polyfluoroarenes

October 4, 2025
Building Larger Hydrocarbons for Optical Cycling

Building Larger Hydrocarbons for Optical Cycling

October 4, 2025

Scientists Discover How Enzymes “Dance” During Their Work—and Why It Matters

October 4, 2025

Electron Donor–Acceptor Complexes Enable Asymmetric Photocatalysis

October 4, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    94 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    92 shares
    Share 37 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Racial Disparities in Anticoagulant Use for Atrial Fibrillation

ICU Nurses’ Perspectives on End-of-Life Care

Exploring Splicing Patterns in Medicinal Rheum Palmatum

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.