• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS

Paralyzed Man Uses Thoughts Alone to Control Robot Arm

Bioengineer by Bioengineer
February 9, 2013
in NEWS
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

It also enabled him to move a robot arm to touch a friend’s hand for the first time in the seven years since he was injured in a motorcycle accident.With brain-computer interface (BCI) technology, the thoughts of Tim Hemmes, who sustained a spinal cord injury that left him unable to move his body below the shoulders, were interpreted by computer algorithms and translated into intended movement of a computer cursor and, later, a robot arm, explained lead investigator Wei Wang, Ph.D., assistant professor, Department of Physical Medicine and Rehabilitation, Pitt School of Medicine.

“When Tim reached out to high-five me with the robotic arm, we knew this technology had the potential to help people who cannot move their own arms achieve greater independence,” said Dr. Wang, reflecting on a memorable scene from September 2011 that was re-told in stories around the world. “It’s very important that we continue this effort to fulfill the promise we saw that day.”

Six weeks before the implantation surgery, the team conducted functional magnetic resonance imaging (fMRI) of Mr. Hemmes’ brain while he watched videos of arm movement. They used that information to place a postage stamp-size electrocortigraphy (ECoG) grid of 28 recording electrodes on the surface of the brain region that fMRI showed controlled right arm and hand movement. Wires from the device were tunneled under the skin of his neck to emerge from his chest where they could be connected to computer cables as necessary.

For 12 days at his home and nine days in the research lab, Mr. Hemmes began the testing protocol by watching a virtual arm move, which triggered neural signals that were sensed by the electrodes. Distinct signal patterns for particular observed movements were used to guide the up and down motion of a ball on a computer screen. Soon after mastering movement of the ball in two dimensions, namely up/down and right/left, he was able to also move it in/out with accuracy on a 3-dimensional display.

“During the learning process, the computer helped Tim hit his target smoothly by restricting how far off course the ball could wander,” Dr. Wang said. “We gradually took off the ‘training wheels,’ as we called it, and he was soon doing the tasks by himself with 100 percent brain control.”

The robot arm was developed by Johns Hopkins University’s Applied Physics Laboratory. Currently, Jan Scheuermann, of Whitehall, Pa., is testing another BCI technology at Pitt/UPMC. 

Co-authors of the paper include Jennifer L. Collinger, Ph.D., Alan D. Degenhart, Andrew B. Schwartz, Ph.D., Douglas J. Weber, Ph.D., Brian Wodlinger, Ph.D., Ramana K. Vinjamuri, Ph.D., and Robin C. Ashmore, Ph.D., all of the University of Pittsburgh; Elizabeth C. Tyler-Kabara, M.D., Ph.D., and Michael L. Boninger, M.D., of the University of Pittsburgh and UPMC; Daniel W. Moran, Ph.D., of Washington University in St. Louis; and John W. Kelly, of Carnegie Mellon University.

The study was funded by the National Institute of Neurological Disorders and Stroke, part of the National Institutes of Health, the University of Pittsburgh’s Clinical and Translational Science Institute, and UPMC.

Tags: BIOENGINEERBioengineeringBionic Engineering
Share12Tweet8Share2ShareShareShare2

Related Posts

New Metabolic Inflammation Model Explains Teen Reproductive Issues

New Metabolic Inflammation Model Explains Teen Reproductive Issues

August 17, 2025
Mpox Virus Impact in SIVmac239-Infected Macaques

Mpox Virus Impact in SIVmac239-Infected Macaques

August 17, 2025

Epigenetic Mechanisms Shaping Thyroid Cancer Therapy

August 17, 2025

Seismic Analysis of Masonry Facades via Imaging

August 16, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Metabolic Inflammation Model Explains Teen Reproductive Issues

Mpox Virus Impact in SIVmac239-Infected Macaques

Epigenetic Mechanisms Shaping Thyroid Cancer Therapy

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.