For our sake and the environment, there is a considerable amount of research into the reduction of plastic for many and various applications. For the first time, researchers have found a way to imbue relatively sustainable paper materials with some of the useful properties of plastic. This can be done easily, cost effectively, and efficiently. A coating called Choetsu not only waterproofs paper, but also maintains its flexibility and degrades safely as well.
Credit: ©2022 Hiroi et al.
For our sake and the environment, there is a considerable amount of research into the reduction of plastic for many and various applications. For the first time, researchers have found a way to imbue relatively sustainable paper materials with some of the useful properties of plastic. This can be done easily, cost effectively, and efficiently. A coating called Choetsu not only waterproofs paper, but also maintains its flexibility and degrades safely as well.
It’s hard to escape the fact that plastic materials are by and large detrimental to the environment. You’ve probably seen images of plastic pollution washing up on beaches, spoiling rivers and killing countless animals. Yet the problem often seems completely out of our hands given the ubiquity of plastic materials in everyday life. Professor Zenji Hiroi from the Institute for Solid State Physics at the University of Tokyo and his team explore ways materials science can help, and their recent discovery aims to replace some uses of plastic with something more sustainable: Paper.
“The main problem with plastic materials as I see it is their inability to degrade quickly and safely,” said Hiroi. “There are materials that can degrade safely, such as paper, but obviously paper cannot fulfill the vast range of uses plastic can. However, we’ve found a way to give paper some of the nice properties of plastic, but with none of the detriments. We call it Choetsu, a low-cost biodegradable coating that adds waterproofing and strength to simple paper.”
Choetsu is a combination of materials which, when applied to paper, spontaneously generate a strong and waterproof film when it makes contact with moisture in the air. The coating consists of safe and low-cost chemicals, mostly methyltrimethoxysilane, some isopropyl alcohol, and a small amount of tetraisopropyl titanate. Paper structures, for example food containers, are sprayed with or dipped into this liquid mixture and are dried at room temperature. Once dry, a thin layer of silica containing methyl, a type of alcohol, forms on the cellulose making up the paper, providing the strong and waterproof properties.
Furthermore, reactions that take place during the coating procedure automatically creates a layer of titanium dioxide nanoparticles. These give rise to a dirt- and bacterial-repellent property known as photocatalytic activity, which protects the coated item for an extended period of time. All of the chemicals involved in the coating break down over time into harmless things such as carbon, water and sandlike silicon.
“The technical challenge is complete, and some applications could be realized soon, such as items for consuming, packaging or storing food,” said Hiroi. “We now hope to use this approach on other kinds of materials as well. The liquid composition can be tuned for other materials, and we can create a dirt- and mold-resistant coating that could form onto glass, ceramics and even other plastics to extend their usefulness. Alongside researcher Yoko Iwamiya, who has been working in this field for some time now, and the rest of my team, I hope we can do something truly beneficial for the world.”
###
Journal article: Yoko Iwamiya, Daisuke Nishio-Hamane, Kazuhiro Akutsu-Suyama, Hiroshi Arima-Osonoi, Mitsuhiro Shibayama, and Zenji Hiroi. “Photocatalytic Silica-Resin Coating for Environmental Protection of Paper as a Plastic Substitute”. Industrial & Engineering Chemistry Research. https://doi.org/10.1021/acs.iecr.2c00784
Useful links:
The Institute for Solid State Physics
https://www.issp.u-tokyo.ac.jp/index_en.html
Hiroi Laboratory
https://www.issp.u-tokyo.ac.jp/maincontents/organization/labs/hiroi_group_en.html
Research Contact
Professor Zenji Hiroi
The Institute for Solid State Physics, The University of Tokyo,
Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8581, Japan
Email: [email protected]
Press contact:
Mr. Rohan Mehra
Public Relations Group, The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
Email: [email protected]
About The University of Tokyo
The University of Tokyo is Japan’s leading university and one of the world’s top research universities. The vast research output of some 6,000 researchers is published in the world’s top journals across the arts and sciences. Our vibrant student body of around 15,000 undergraduate and 15,000 graduate students includes over 4,000 international students. Find out more at www.u-tokyo.ac.jp/en/ or follow us on Twitter at @UTokyo_News_en.
Journal
Industrial & Engineering Chemistry Research
DOI
10.1021/acs.iecr.2c00784
Method of Research
Experimental study
Subject of Research
Not applicable
Article Title
Photocatalytic Silica-Resin Coating for Environmental Protection of Paper as a Plastic Substitute
Article Publication Date
13-May-2022