• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Paleoclimatic research shows the connection between climate variability and mercury levels in the Arctic

Bioengineer by Bioengineer
May 10, 2023
in Chemistry
Reading Time: 3 mins read
0
EastGRIP ice cores
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Mercury, a global pollutant that is especially toxic health and the environment, is the focus of a new Italian-led study recently published in the scientific journal Nature Geoscience.

EastGRIP ice cores

Credit: Photo by Helle Kjær – East Greenland Ice-core Project, www.eastgrip.org

Mercury, a global pollutant that is especially toxic health and the environment, is the focus of a new Italian-led study recently published in the scientific journal Nature Geoscience.

Scientists from Ca’ Foscari University of Venice and the Institute of Polar Sciences of the National Research Council (Cnr-Isp), in collaboration with other international partners, examined the relationship between past climate variations with mercury levels in the Arctic to understand what natural factors influence the biogeochemical cycling of this element.

In the context of the East GReenland Ice core Project (EastGRIP) coordinated by the Centre for Ice and Climate in Copenhagen, the research team carried out the analysis of an ice core extracted from the Greenland ice sheet, observing the dynamics of mercury between 9,000 and 16,000 years ago, during the transition from the Last Glacial Period to the current climate stage, the Holocene. The results shows that mercury levels during this transition were strongly influenced by the reduction of the sea ice coverage.

“Our study shows that mercury deposition in the Arctic tripled at the beginning of the Holocene compared to the Last Glacial Period,” explains Delia Segato, the lead author and a PhD student in Science and Management of Climate Change at Ca’ Foscari University of Venice. “Thanks to the analysis and interpretation of paleoclimatic archives and the development of an atmospheric mercury chemistry model,” Segato continues, “the study concluded that the loss of sea ice, especially the perennial one, in the subpolar Atlantic Ocean due to climate warming 11,700 years ago was the main cause of the increase of mercury deposition in the Arctic.”

Mercury emissions, carefully monitored at the international level, are not only of anthropogenic origin. The biogeochemical cycle of mercury is controlled also by several natural sources, such as

volcanic activities, as well as a multitude of physical, chemical, and biological processes that occur in the soil, ocean, and atmosphere. “In polar regions, sea ice plays a fundamental role in controlling these processes”, explains Andrea Spolaor, a researcher at the Institute of Polar Sciences in Venice and corresponding author of the paper. In fact, it has been shown that perennial sea ice, often several meters in thickness, impedes the transfer of mercury from the ocean to the atmosphere, which would otherwise occur due to the volatility of this metal”.

“On the contrary, seasonal sea ice, being thinner, more permeable, and more saline, allows mercury transfer and promotes complex atmospheric reactions involving bromine and increases the frequency of atmospheric mercury depletion events, causing more rapid deposition in the Arctic environment,” concludes Spolaor. “Due to the present-day climate warming, the extent of perennial sea ice in the Arctic has decreased by more than 50% compared to the beginning of satellite measurements in the 1970s. Future studies will help us estimate how this phenomenon will impact mercury levels and what are the associated risks for Arctic populations and ecosystems.”



Journal

Nature Geoscience

DOI

10.1038/s41561-023-01172-9

Article Title

Arctic mercury flux increased through the Last Glacial Termination with a warming climate

Article Publication Date

4-May-2023

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

New Bacterium Harnesses Spent Battery Waste, Paving the Way for Self-Sufficient Battery Recycling

October 22, 2025
Light Particles Thrive in Groups, Study Reveals

Light Particles Thrive in Groups, Study Reveals

October 22, 2025

Innovative Observation Technique Advances Prospects for Lithium Metal Batteries

October 22, 2025

Edible Fungus Offers Breakthrough in Making Paper and Fabric Liquid-Resistant

October 22, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1274 shares
    Share 509 Tweet 318
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    306 shares
    Share 122 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    145 shares
    Share 58 Tweet 36
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    131 shares
    Share 52 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Pathogenic Bacteria Outsmart Epithelial Cell Defense

UCLA Researchers Create Universal Single-Product Immunotherapy for Breast Cancer

Engineers Develop Emergency Management Simulation Game to Prepare for Derecho Events

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.