• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Oyster farming to benefit from new genetic screening tool

Bioengineer by Bioengineer
May 24, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Oyster farmers are set to benefit from a new genetic tool that will help to prevent disease outbreaks and improve yields.

The technology will enable hatcheries to rapidly assess the genetic make-up of their oysters, so they can select animals with desirable characteristics from which to breed.

Scientists at the University of Edinburgh's Roslin Institute have developed a chip loaded with tens of thousands of pieces of DNA – each carrying a specific fragment of the oyster's genetic code.

Using a tiny sample of DNA from each oyster, the chip can measure small genetic variations – known as Single Nucleotide Polymorphisms – that are linked to physical traits.

The tool will initially be used to spot oysters that are resistant to Oyster Herpes Virus, a disease that causes major losses in young stocks.

Researchers are also investigating how the chip can be used to identify oysters with other desirable characteristics, such as faster growth rates.

Similar selective breeding techniques are already used to improve the health and productivity of farmed salmon stocks and land-based livestock.

The chip has been developed for two key species – the Pacific oyster, which is the main species of farmed oyster, and the native European flat oyster, a locally important species. Details of the technology are published in the journal G3: Genes, Genomes, Genetics.

The project also involved researchers from the Centre for Environment Fisheries and Aquaculture Science (Cefas) and Edinburgh Genomics.

The team is now collaborating with experts from several European countries, Australia, New Zealand and Mexico to apply the technology.

Lead researcher Dr Ross Houston, of the University of Edinburgh's Roslin Institute, said: "Oysters are one of the most important group of species for global aquaculture with more than 600,000 tonnes produced each year. This chip is an enabling tool for genetics and breeding research in oysters, and we are working with the industry to implement this technology with the goal of improving health and yield of stocks."

Dr Tim Bean, from Cefas, said: "This new technology brings the power of selective breeding a step closer for oyster producers in the UK and worldwide."

###

Media Contact

Jen Middleton
[email protected]
44-131-650-6514
@edinunimedia

http://www.ed.ac.uk

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Validating PRQ2000 for Measuring Dementia Social Support

November 11, 2025
Sustainable 3D Cellulose Aerogels for Solar Solutions

Sustainable 3D Cellulose Aerogels for Solar Solutions

November 11, 2025

Neoadjuvant Chemoradiotherapy vs Chemotherapy in Rectal Cancer

November 11, 2025

Improving Maternity Care Access to Reduce Infant Mortality Rates

November 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    316 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    208 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    140 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1305 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Validating PRQ2000 for Measuring Dementia Social Support

Sustainable 3D Cellulose Aerogels for Solar Solutions

Neoadjuvant Chemoradiotherapy vs Chemotherapy in Rectal Cancer

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.