• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Oxford University: Better sleep linked with family tree strength

Bioengineer by Bioengineer
August 6, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The question of why we sleep has been a longstanding subject of debate, with some theories suggesting that slumber provides respite for the brain, which allows it to filter out insignificant neural connections, build new ones, strengthen memories and even repair itself. However, new Oxford University research has used mathematical approaches to tackle the adaptive significance of sleep, and the findings suggest that sleep has another equally significant purpose – boosting our 'fitness' and future family line reproductive success.

The paper, published in PLOS ONE has used mathematical modelling to investigate the adaptive significance of sleep and assess if it impacts 'fitness' (defined as the number of future children, grandchildren, great grandchildren etc.) and mortality.

The work was led by Jared Field, a postgraduate student in the Oxford Mathematical Institute and Professor Mike Bonsall, Professor of Mathematical Biology in the Department of Zoology. The mathematical formulas allowed the team to compare the 'fitness' success of sleeping and not sleeping under a range of different conditions, such as varying birth and mortality rates, and environments, including vulnerable and safe environments.

The findings show that in all conditions a sleeping strategy led to greater fitness compared to being constantly active. When birth rates were altered but mortality kept constant, they found that a sleeping strategy achieved a greater fitness than staying active indefinitely. In a safe sleeping environment it was best to be most active when mortality was lowest, where as in a vulnerable environment the reverse was true.

The only instance when constant activity was found to be as beneficial for reproductive fitness was when birth and mortality rates were constant. However, since organisms do not exist in a constant world this result was deemed insignificant.

Jared Field explains: 'Sleep as a behaviour, is in and of itself, valuable. While much research has been done to find vital functions that explain why organisms sleep, our study provides broader ecological reasons applicable to a range of environments and conditions. Our analyses suggests that sleep first evolved simply because activity-inactivity cycles are adaptive in a non-constant world.'

'Regardless of the scenario, sleep and periods of inactivity were found to have a more positive impact on fitness than not sleeping.'

Mike Bonsall adds: 'The application of mathematics to understanding biological systems has far reaching consequences and being able to understand phenomena such as how sleep evolved through a mathematical lens is a fantastic advance'.

Now that the team have grasped a logical understanding of the evolution of sleep and the factors that underpin its value, in future work they will further investigate the ecological and demographic factors that make or break the difference between a good, productive sleep pattern and a bad one.

###

Notes to editors:

For further information please contact Lanisha Butterfield, Media Relations Manager at Oxford University on 01865 280531 or email [email protected]

The full paper citation is 'The evolution of sleep is inevitable in a periodic world' written by Jared M. Field1,2, Michael B. Bonsall2*,published in PLOS One.

Media Contact

Lanisha Butterfield
[email protected]
01-865-280-531
@UniofOxford

http://www.ox.ac.uk/

Share12Tweet8Share2ShareShareShare2

Related Posts

Chloroplast lncRNA Drives Leaf Ageing Function Change

Chloroplast lncRNA Drives Leaf Ageing Function Change

October 10, 2025
Human Gut Bacteria Make Contrasting Immune Glycolipids

Human Gut Bacteria Make Contrasting Immune Glycolipids

October 10, 2025

Hippos Roamed Europe During the Last Ice Age, New Research Reveals

October 10, 2025

High-Temperature Effects on Cnidium officinale Transcriptome Analyzed

October 10, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1195 shares
    Share 477 Tweet 298
  • New Study Reveals the Science Behind Exercise and Weight Loss

    102 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    96 shares
    Share 38 Tweet 24
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    83 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Wiley Expands Physics Portfolio with Acquisition of Influential Nanophotonics Journal

Solar Power Illuminates Path to a Fossil-Free Chemical Industry

Understanding Triage Nurses’ Responses to Workplace Violence

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.